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Abstract

Plausible counterfactual explanations (p-CFEs) are perturbations that minimally modify inputs
to change classifier decisions while remaining plausible under the data distribution. In this study,
we demonstrate that classifiers can be trained on p-CFEs labeled with induced incorrect target
classes to classify unperturbed inputs with the original labels. While previous studies have shown
that such learning is possible with adversarial perturbations, we extend this paradigm to p-CFEs.
Interestingly, our experiments reveal that learning from p-CFEs is even more effective: the resulting
classifiers achieve not only high in-distribution accuracy but also exhibit significantly reduced bias
with respect to spurious correlations.

1 Introduction
Altering a classifier’s prediction through minimal input perturbations has yielded valuable insights into the
decision-making processes of machine learning models. Adversarial attacks (Szegedy et al., 2014), for instance,
have demonstrated the unexpected vulnerability of well-trained models to imperceptibly small perturbations,
and various forms of such perturbations have been found through extensive studies (Wachter et al., 2017;
Madry et al., 2018b). In contrast, plausible counterfactual explanations (p-CFEs) are minimal perturbations
that alter classifications in a semantically coherent manner. Designed to align with the data manifold and to
be interpretable, p-CFEs offer visual explanations of model predictions through “what-if” scenarios (Zhang
et al., 2023; Sadiku et al., 2025a). Despite differing in their constraints, adversarial attacks and p-CFEs
share a common objective: altering model predictions through minimal input changes-—suggesting potential
synergies that remain underexplored in the literature.

Recently, Kumano et al. (2024a) revisited a seminal study by Ilyas et al. (2019) and theoretically justified
their observations: adversarial perturbations, although seemingly subtle and meaningless, actually contain
generalizable, class-specific features—a model trained on them labeled with their induced (incorrect) classes
can successfully classify clean images into original classes. Given the structural similarity between adversarial
examples and p-CFEs as minimal input perturbations, it is natural to ask whether the representational
richness observed in adversarial examples also applies to p-CFEs. However, the defining characteristic of
p-CFEs—plausibility—may lead to fundamentally different outcomes.

This study addresses learning from p-CFEs and empirically demonstrates that it is more effective than
learning from adversarial perturbations, achieving higher in-distribution and out-of-distribution accuracy in
the presence of spurious correlations–features that correlate with the label during training but are semantically
irrelevant. Our results suggest that p-CFEs not only induce prediction flips but also guide models toward
learning features that better reflect the true, semantic structure of the data.
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Figure 1: Random samples from our WaterBirds training set variants. The bottom row shows perturbations (magnified
40 times for visibility) applied to the original image on the left by different methods. The true label is water bird ; the
target label is land bird.

Contributions

1. New instance of learning from perturbations. We demonstrate that the insightful observation of
learning from adversarial perturbations by Ilyas et al. (2019) generalizes to p-CFEs, highlighting the
broader applicability of the learning from perturbations paradigm.

2. High classification accuracy. Our experiments show that learning from p-CFEs (Sadiku et al., 2025a)
yields high classification accuracy on original samples—comparable to models trained on adversarial
perturbations (including ℓ2 and ℓ∞ PGD, and ℓ2 CFEs).

3. Removing spurious correlations. The experiments further reveal that learning from p-CFEs
significantly outperforms learning from perturbations in mitigating spurious correlations. On the
WaterBirds dataset, where evaluation sets are designed with strong spurious correlations, learning from
p-CFEs even surpasses standard (noise-free) training by 12% in worst-group accuracy.

2 Related Work
Small input perturbations have yielded various insightful observations that deepen our understanding of
machine learning models. A prominent example is adversarial perturbations (Szegedy et al., 2014), which can
easily fool seemingly strong classifiers with imperceptibly small changes, thereby questioning the reliability of
machine learning models. Such perturbations exist in various forms (Madry et al., 2018b; Xu et al., 2019;
Kazemi et al., 2023), and they are known to transfer across different models (Xiaosen et al., 2023; Sadiku
et al., 2025b). Counterfactual explanations (CFEs; (Wachter et al., 2017)) represent another line of research
on small input perturbations. While early CFEs resembled adversarial perturbations, recent approaches
increasingly emphasize alignment with the data manifold. In particular, Sadiku et al. (2025a) proposed
a method for generating plausible counterfactuals (p-CFEs) via proximal gradient optimization, yielding
perturbations that contain semantics aligned with the target class. However, such counterfactuals have
primarily been used for interpretability purposes rather than as training data. Although a few studies have
analyzed the connection between CFEs and adversarial perturbations (Pawelczyk et al., 2022; Freiesleben,
2022), the interaction between these two research directions remains limited.

This study investigates whether observations in the literature of adversarial perturbations, particularly
learning from adversarial perturbations (Ilyas et al., 2019; Kumano et al., 2024a,b), extend to p-CFEs, and
how the plausibility of p-CFEs gives rise to distinct outcomes.
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3 Preliminaries
Assume a binary classification setting where X ⊆ Rd denotes the input space, Y = {±1} denotes the set of
possible class labels, and D = {(xi, yi) ∈ X × Y}ni=1 is a training dataset consisting of n independent and
identically distributed data points generated from a joint density ψ : X × Y 7→ R+. Furthermore, we define
q(x, y) := ψ(x|y), which is the corresponding density of the inputs conditioned on the given label y.

We let fθ : X → R2 denote a neural network classifier that takes a d-dimensional sample as input and
outputs logits of the two classes. The final decision is denoted by f(x) := argmaxi[fθ(x)]i. For d ∈ N let
[d] = {1, ..., d}.

Standard Training. With the exponential loss L(x, y) := exp(−y · f(x)) or logistic loss L(x, y) :=
ln(1+exp(−y ·f(x))), training a classifier is performed by minimizing a loss function R̂(θ) :=

∑n
i=1 L(xi, yi)/n

from the training set via empirical risk minimization (ERM).

4 Learning from p-CFEs
We now introduce a formal definition of learning from perturbations.

Definition 4.1 (Learning from perturbations). Let D := {(xi, yi)}ni=1 be a training dataset, where each xi is
an input and yi is its corresponding label. Let f be a classifier trained on D via standard training. For each i,
a perturbed example x̃i is generated to increase the probability of a target label ỹi ̸= yi under f , resulting in a
perturbed dataset D̃ := {(x̃i, ỹi)}ni=1. Training a classifier from scratch on D̃, is referred to as learning from
perturbations.

Prior studies (Ilyas et al., 2019; Kumano et al., 2024a,b) assume the perturbations to be adversarial ones,
typically generated using targeted Projected Gradient Descent (PGD; (Madry et al., 2018a)) via the following
optimization for input x, target label ỹ, and perturbation budget ϵ > 0

min
x∈X

L(x̃, ỹ) s.t. ∥x̃− x∥p ≤ ϵ, (1)

where ∥ · ∥p denotes the ℓp norm. Crucially, this differs from standard adversarial training : each training
sample x̃i is paired with a target incorrect label ỹi, while evaluation is performed on the clean input xi with
the original label y.

Original Grad-CAM

Figure 2: Top row: Original and Grad-CAM (Sel-
varaju et al., 2017) visualizations for a misclassified land-
bird (with a water background) from the WaterBirds
dataset—incorrectly predicted as a waterbird. Bottom
row: Original and Grad-CAM visualizations for a mis-
classified big dog (with an indoor background) from the
SpuCoAnimals dataset—incorrectly predicted as a small
dog.

We extend this idea to p-CFEs by perturbing each
input-label pair (x, y) using the method of Sadiku et al.
(2025a), formulated as the following unconstrained op-
timization problem

x̃ := argmin
x′∈A

∥x′ − x∥22 + γL(x′, ỹ)

− τ q̂(x′, ỹ) + β∥x′ − x∥0,
(2)

where q̂( · , ỹ) estimates the density of the target
class ỹ in X , and A :=×d

i=1
[−Ai,Ai], with Ai ∈ R,

defines the feature value range, either derived from
the dataset or specified by the user. The parameters
γ, τ, β > 0 control tradeoffs for validity (flipping the
decision), plausibility (staying on the data manifold),
and sparsity (minimizing feature changes), respectively.

Plausibility Term. The plausibility term q̂( · , ỹ)
only needs to be differentiable, enabling gradient-based
optimization. For example, KDEs and GMMs are
standard differentiable estimators (Sadiku et al., 2025a).
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Original Image Original PGD ℓ2 PGD ℓ∞ CFE ℓ2 p-CFE ℓ0

Figure 3: Saliency maps for different models. Left to right: (1) original image of a land bird (top) and a dog (bottom),
(2) saliency map from a standard model, (3-5) maps from models trained on PGD (ℓ2, ℓ∞) and CFE ℓ2 adversarial
examples, (6) maps from models trained on p-CFE ℓ0 examples. All models use ResNet50.

For higher-dimensional data, more expressive models like VAEs or GANs can be used (Van Looveren and
Klaise, 2021). The method is compatible with any modern classifier that supports backpropagation, including
large language models (e.g., GPT-n with n > 2) and vision models such as Swin Transformers with GELU
activations (Liu et al., 2021).

Adversarial vs. Counterfactual. The key distinction in Eq. (2) compared to adversarial attacks is the
term minimizing the negative target-class density estimate, which encourages perturbed instances to lie on
the target data manifold. By rewriting Eq. (2) as the sum of a smooth (possibly non-convex) term and
a non-smooth term with a closed-form proximal operator, we adopt the solution strategy of Sadiku et al.
(2025a), using the accelerated proximal gradient method of Beck and Teboulle (2009) to generate p-CFEs.

5 Experiments
Datasets. We adopt two standard benchmark datasets that involve spurious correlations. The Water-
Birds (Sagawa et al., 2020a) dataset has two labels, namely landbird and waterbird. The spurious correlation
arises from the change in background (like a water bird on land or a landbird above or on water). The
SpuCoAnimals (Joshi et al., 2023) dataset contains two categories: big dogs and small dogs. Spurious
correlation arises on the assumption that big dogs were mostly outside and the small dogs inside the house.
Fig. 2 visually illustrates spurious correlations in both datasets, with additional examples given in Appendix A.
For a review on spurious correlations, see (Ye et al., 2024).

Setup. We fine-tune a pre-trained ResNet-50 model (He et al., 2016) on original images, PGD (ℓ2, ℓ∞), CFE
ℓ2-adversarial perturbations (Madry et al., 2018b; Wachter et al., 2017), and p-CFE (ℓ0) perturbations (Sadiku
et al., 2025a).1 The target classes ỹ are chosen uniformly at random, which makes the features of original
images become uncorrelated with the labels. Training examples are shown in Fig. 1. We use the SGD
optimizer in PyTorch with a learning rate of 1e-5, momentum of 0.9, weight decay of 5e-2, batch size of 8,
and train for 360 epochs.

Metrics. Train and test accuracies are the fractions of correctly classified samples in the training and
test sets, respectively. To quantify spurious correlations, we use worst-group accuracy (WGA) as defined
in (Sagawa et al., 2020b). For instance, for WaterBirds, groups are defined as (attribute, label) pairs. The

1Kumano et al. (2024a) extended Theorem 4.1 to show that training solely on adversarial perturbations can match the
accuracy of models trained on original data. Our experiments with this setup and standard vision datasets are detailed in
Appendix B.
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Table 1: Train and test accuracies across various methods for various datasets. The model used is ResNet50 and we
follow the setup of Yang et al. (2023). The results of standard training (Original) are provided for reference. Learning
from p-CFEs suffers less from spurious correlations than learning from adversarial perturbations.

Dataset Split Set PGD ℓ2 (std) PGD ℓ∞ (std) CFE ℓ2 (std) p-CFE ℓ0 (std) Original (std)

WaterBirds Train 97.04 (0.07) 98.00 (0.08) 97.93 (0.07) 91.50 (0.56) 99.98 (0.02)
Test 86.08 (0.69) 86.02 (0.56) 88.58 (0.61) 86.54 (0.26) 87.56 (0.21)

SpuCoAnimals Train 96.25 (0.03) 97.47 (0.02) 97.89 (0.08) 97.10 (0.01) 99.86 (0.18)
Test 78.10 (0.92) 79.43 (0.68) 79.00 (0.93) 81.78 (0.59) 83.13 (0.37)

Table 2: Worst-group accuracies across various methods for different datasets, following the configuration of Yang
et al. (2023). The results of standard training (Original) are provided for reference. Learning from p-CFEs suffers less
from spurious correlations and even outperforms standard training on the WaterBirds dataset.

Dataset Split Set PGD ℓ2 (std) PGD ℓ∞ (std) CFE ℓ2 (std) p-CFE ℓ0 (std) Original (std)

WaterBirds Train 56.55 (4.20) 72.00 (4.69) 74.99 (2.54) 77.97 (2.22) 99.90 (0.13)
Test 56.58 (2.17) 61.72 (2.50) 63.04 (2.19) 76.05 (1.45) 64.97 (1.45)

SpuCoAnimals Train 62.60 (1.33) 74.60 (1.41) 72.86 (1.61) 80.20 (0.86) 99.70 (0.14)
Test 56.06 (1.99) 57.53 (1.79) 56.60 (3.15) 63.53 (1.55) 65.60 (0.90)

worst-group—(waterbirds, land)—has only 56 training samples, while other groups (e.g., (landbirds, land),
(waterbirds, water), (landbird, water) have up to 20 times more. A WGA of 0 indicates that all (waterbirds,
land) examples were misclassified, revealing a strong spurious correlation with the land background. We
compute these metrics across five classifiers trained on original data, PGD (ℓ2, ℓ∞), CFE (ℓ2), and p-CFE ℓ0
examples.

Results. From Tab. 1, learning from p-CFEs matches learning from perturbations (with ℓ2 and ℓ∞ PGD)
as well as CFE ℓ2 on achieving comparable training accuracy to standard training, thus extending empirical
findings of Kumano et al. (2024a) to p-CFEs. Note that except for standard training, the models are trained
on perturbed images with target incorrect labels (cf. Theorem 4.1), and the training accuracy was evaluated
on the original training images and labels. Moreover, Tab. 2 shows that on WaterBirds and SpuCoAnimals,
training with p-CFEs substantially boosts worst-group accuracy—surpassing even standard (noise-free)
training by 12 % on WaterBirds. This indicates that p-CFE-trained models rely less on spurious background
features. Fig. 3 confirms that models trained on other perturbations focus heavily on spurious backgrounds,
while p-CFE training shifts attention to relevant features (e.g., the bird and the dog), effectively mitigating
spurious correlations.

6 Conclusion and Discussion
We showed that training with p-CFEs provides a compelling alternative to adversarial perturbations, guiding
models toward semantically meaningful features and reducing reliance on spurious correlations. Our approach
is data-efficient, model-agnostic, and requires no group labels. Future work includes scaling to higher-
dimensional datasets using more expressive density estimators, and extending to large models such as
LLMs and vision-language models (VLMs). Further, combining the theoretical framework of learning from
adversarial perturbations in (Kumano et al., 2024a,b) with the connection between adversarial perturbations
and p-CFEs (Pawelczyk et al., 2022; Freiesleben, 2022) can justify our observations.
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Original Grad-CAM

Figure 4: Top row: Original and Grad-CAM visualizations for a misclassified landbird (with a water background) from
the WaterBirds dataset—incorrectly predicted as a waterbird. Bottom row: Original and Grad-CAM visualizations
for a misclassified small dog (with an outdoor background) from the SpuCoAnimals dataset—incorrectly predicted as
a big dog.

Appendix

A Spurious Correlations - Additional Examples
Fig. 4 illustrates additional examples of spurious correlations. In the top row, the model relies on the presence
of water to classify waterbirds. In the bottom row, it associates the outdoor background with the presence of
big dogs.

B Learning from p-CFEs - Additional Experiments
In this section, we extend the work of Kumano et al. (2024a) on learning from adversarial perturbations to
traditional ℓ2 CFEs from Wachter et al. (2017), as well as the more recent ℓ0 p-CFEs proposed by Sadiku et al.
(2025a). We generate adversarial examples using Projected Gradient Descent (PGD) (Madry et al., 2018b)
with cross-entropy loss under varying norms (ℓ2, ℓ∞). CFEs are constructed by minimizing the cross-entropy
loss regularized by the unweighted squared Euclidean distance, controlled by the tradeoff parameter λ. We
denote λCF as the learning rate used by the Adam optimizer during CFE optimization. For p-CFE ℓ0, we
define L as the Lipschitz constant, and λsteps as the number of search steps.

A Results on Artificial Data
We experiment on 2D dim data generated from uniform or Gaussian distribution. The model used for these
experiments is a one-layer neural network (Kumano et al., 2024a). Figs. 5 to 12 compare the accuracies of
models trained with adversarial examples versus noise-augmented data, across varying input dimensions and
numbers of natural and adversarial samples. For CFE ℓ2 and p-CFE ℓ0, we additionally vary the ratio of
modified pixels, denoted by dδ/d where dδ is the number of modified pixels and d is the total number of
pixels. These results extend the findings of Kumano et al. (2024a) to settings involving both traditional
CFEs and p-CFEs.
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Figure 5: Comparison of the accuracy of the model trained on CFE ℓ2 perturbations and noise trained model on the
clean dataset. Data was acquired from a uniform distribution. The hyper-paramaters λ = 0.001 and λCF = 0.01
were used. The algorithm was run for 0.05d iterates, where d is the input dimension.
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clean dataset. Data was acquired from a Gaussian distribution. The hyper-paramaters λ = 0.001 and λCF = 0.01
were used. The algorithm was run for 0.05d iterates, where d is the input dimension.
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with multiple input dimensions, were used. All the attacks were executed for 100 iterations.
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Figure 10: Comparison of the accuracy of the model trained on PGD ℓ2 perturbations and noise trained model on the
clean dataset. Data was acquired from a Gaussian distribution. The hyper-parameter ϵ = 0.78 was used for most of
the graphs (top-left, top-right, bottom-left). For the graph at bottom-right, multiple perturbation constraints, along
with multiple input dimensions, were used. All the attacks were executed for 100 iterations.
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Figure 11: Comparison of the accuracy of the model trained on PGD ℓ∞ perturbations and noise trained model on
the clean dataset. Data was acquired from a uniform distribution. The hyper-parameter ϵ = 0.03 was used, along
with 100 iterations. The hyper-parameter ϵ = 0.03 was used for most of the graphs (top-left, top-right, bottom-left).
For the graph at bottom-right, multiple perturbation constraints were used.
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Figure 12: Comparison of the accuracy of the model trained on PGD ℓ∞ perturbations and noise trained model on
the clean dataset. Data was acquired from a Gaussian distribution. The hyper-parameter ϵ = 0.03 was used, along
with 100 iterations. The hyper-parameter ϵ = 0.03 was used for most of the graphs (top-left, top-right, bottom-left).
For the graph at bottom-right, multiple perturbation constraints were used.
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B Results on Original (Natural) Datasets
A convolutional neural network was used for the MNIST (Deng, 2012) and Fashion-MNIST (FMNIST) (Xiao
et al., 2017) datasets, while a WideResNet was used for CIFAR-10 (Krizhevsky et al., 2009), following the
setup of Kumano et al. (2024a). We denote deterministic target labels by D and random target labels by
R. The learning rate for the Adam optimizer used in CFE generation is set to λCF = 0.01, unless stated
otherwise. All algorithms were run for 100 iterations by default.

For each dataset, we first train a model on the clean training set, then use it to generate adversarial
samples or CFEs from that same set. A second model is then trained on the perturbed data. Figs. 13 to 21
compare the training and validation accuracies of models trained on clean versus perturbed data. Validation
accuracy refers to performance on the clean validation set, while training accuracy reflects performance on
the perturbed training data. These results extend the findings of Kumano et al. (2024a) to settings involving
both traditional CFEs and p-CFEs for standard benchmark datasets.

B.1 MNIST
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Figure 13: Standard training and validation accuracy of a simple convolutional neural network model trained on
MNIST dataset for 100 epochs.
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Figure 14: Training and Validation accuracies for models trained on MNIST counterfactuals generated using p-CFE
ℓ0 and CFE ℓ2. For CFE ℓ2, we used λ = 0.1 (ℓ2 (regularization strength)) and λCF = 0.01 (step-size for Adam
Optimizer). For p-CFE ℓ0, we used a Lipschitz constant L =1e-4 and 5 search steps. Both methods were run for 100
epochs.
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Figure 15: Training and Validation accuracies for models trained on MNIST adversarial samples generated by PGD
ℓ∞ and ℓ2. The hyper-parameters ϵ = 2 and ϵ = 0.3 were used for the PGD ℓ2 and ℓ∞ attacks, respectively. Both
methods were run for 100 epochs.
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B.2 FMNIST
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Figure 16: Standard training and validation accuracy of a simple convolutional neural network model trained on
FMNIST dataset for 200 epochs.
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Figure 17: Training and Validation accuracies for models trained on FMNIST adversarial samples generated using
CFE ℓ2 and p-CFE ℓ0. For CFE we used ℓ2 λ = 0.01 and λCF = 0.01; for p-CFE ℓ0, a Lipschitz constant L =1e-5
and 5 search steps were considered. Both methods were run for 100 epochs.
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Figure 18: Training and Validation accuracies for models trained on FMNIST adversarial samples generated by PGD
ℓ∞ and ℓ2. The hyper-parameters ϵ = 2 and ϵ = 0.3 were considered for PGD ℓ2 and ℓ∞ attack, respectively. Both
methods were run for 100 epochs.

B.3 CIFAR-10
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Figure 19: Standard training and validation accuracy of a wide ResNet model trained on the CIFAR10 dataset for 200
epochs.
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Figure 20: Training and Validation accuracies for models trained on CIFAR10 counterfactuals generated by CFE
ℓ2 and p-CFE ℓ0. The hyper-parameters λ = 0.01 and λCF = 0.001 were considered for CFE ℓ2, and for p-CFE ℓ0,
Lipschitz constant L =1e-4 with 4 search steps were considered. Both methods were run for 100 epochs.
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Figure 21: Training and Validation accuracies for models trained on CIFAR10 adversarial samples generated by PGD
ℓ∞ and ℓ2. The hyper-parameters ϵ = 0.5 and ϵ = 0.1 were considered for PGD ℓ2 and ℓ∞ attack, respectively. Both
methods were run for 100 epochs.
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