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Abstract

We study the problem of finding optimal
sparse, manifold-aligned counterfactual ex-
planations for classifiers. Canonically, this
can be formulated as an optimization prob-
lem with multiple non-convex components,
including classifier loss functions and mani-
fold alignment (or plausibility) metrics. The
added complexity of enforcing sparsity, or
shorter explanations, complicates the prob-
lem further. Existing methods often focus
on specific models and plausibility measures,
relying on convex ℓ1 regularizers to enforce
sparsity. In this paper, we tackle the canon-
ical formulation using the accelerated prox-
imal gradient (APG) method, a simple yet
efficient first-order procedure capable of han-
dling smooth non-convex objectives and non-
smooth ℓp (where 0 ≤ p < 1) regularizers.
This enables our approach to seamlessly incor-
porate various classifiers and plausibility mea-
sures while producing sparser solutions. Our
algorithm only requires differentiable data-
manifold regularizers and supports box con-
straints for bounded feature ranges, ensur-
ing the generated counterfactuals remain ac-
tionable. Finally, experiments on real-world
datasets demonstrate that our approach ef-
fectively produces sparse, manifold-aligned
counterfactual explanations while maintain-
ing proximity to the factual data and compu-
tational efficiency.
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Figure 1: Examples of possible CFEs for an input image of
the digit 9 when changing the classification to 4: Sparsity
constraints alone produce adversarial examples, while plau-
sibility constraints lead to unrealistic CFEs. Combining
both yields CFEs that are sparse yet aligned with the target
class 4’s data manifold.

1 Introduction

Machine learning models are increasingly deployed in
critical decision-making scenarios, from finance and
healthcare to criminal justice and hiring. While these
classifiers can be highly accurate, their decision-making
processes are often opaque, raising concerns about
transparency, fairness, and accountability. Counter-
factual explanations (CFEs) have emerged as powerful
tools to provide insights into a classifier’s decision-
making process by offering hypothetical “what-if” sce-
narios. Unlike explanation methods like LRP [Bach
et al., 2015] and LIME [Ribeiro et al., 2016], which
identify the minimal set of features contributing to
the current classification, CFEs focus on detecting the
minimal set of absent features whose presence would
change the classification [Wachter et al., 2017].

Basic Principles. In essence, a CFE suggests small
changes to input features (Proximity) that could lead to
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(a) S-CFE (b) S-CFEKDE/S-CFEGMM (c) S-CFEkNN

Figure 2: A simple dataset illustrates the need for a plausibility term in CFE algorithms. (a) Our S-CFE method without
a plausibility term generates CFEs near the factual blue data points, but they remain distant from the distribution of
correctly classified orange data points. (b) Our S-CFEKDE method, which combines S-CFE with a KDE-based plausibility
term, produces CFEs within high-density regions. (c) Similarly, S-CFEkNN, combining S-CFE with a k−NN-based
plausibility term generates CFEs near the boundary of high-density regions. The green trajectory connecting the green
data points represents the iterates of our S-CFE algorithm. The dashed black line represents the decision boundary of a
linear classifier.

a different, more favorable outcome (Validity). These
changes must be Actionable, meaning they should ap-
ply only to valid feature ranges and avoid unrealistic
suggestions. For example, a CFE in a loan application
scenario should not propose that Alice reduce her age
by ten years.

Plausibility. The basic principles of CFEs —Prox-
imity, Validity, and Actionability —highlight their sim-
ilarity to adversarial examples. However, a critical
distinguishing conceptual feature lies in their Plausibil-
ity. While adversarial attacks introduce small changes,
known as perturbations, to mislead the classifier into
incorrect predictions—often pushing the data point out
of its original class distribution—CFEs aim to nudge
the data point toward the target class’s distribution.
This ensures that the explanations are not only effec-
tive but also grounded in plausible real-world scenarios.
Fig. 2 illustrates this property using a synthetic 2D
Gaussian dataset, comparing CFEs generated without
a data distribution penalty to those incorporating a
plausibility term, ensuring the CFEs align with the
target class distribution.

Sparsity. Additionally, CFEs should modify as few
features as possible to promote simplicity, a concept
known as Sparsity. Studies show that shorter expla-
nations are easier for people to understand, making
sparsity critical [Mothilal et al., 2020, Naumann and
Ntoutsi, 2021]. Combined with the proximity require-
ment, sparsity implies that feature changes should be
minimal and low in magnitude. For instance, rather

than suggesting multiple changes, a CFE might recom-
mend that Alice raise her income by just $10K to shift
the loan decision from rejection to approval, as opposed
to requiring a $50K increase or multiple simultaneous
feature adjustments.

However, existing methods for generating CFEs often
struggle to produce results that are both sparse and
adhere to the data manifold, leading to unrealistic
or impractical suggestions. To better understand the
tradeoff between sparsity and plausibility, we provide
an illustration in Fig. 1 using an MNIST image [LeCun
et al., 1998]. The goal is to minimally alter a 9 to
resemble a 4. Sparsity alone produces perturbations
similar to adversarial attacks (leftmost column), while
plausibility alone leads to unrealistic CFEs (rightmost
column). By balancing both, we achieve simple, realis-
tic changes, as shown in the bottom-right examples.

To capture these requirements, one would ideally solve
the following optimization problem to find a CFE for
a given factual data point xf

min
x∈actionable set

counterfactual loss of x

+ dist to xf

+ dist to data manifold
+ No. of feature changes,

(1)

which we refer to as the canonical form of a CFE.
The key technical challenge lies in the fact that the
objective terms can be non-convex and non-smooth,
due to the use of complex classifiers, intricate distance
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measures to the data manifold, and sparsity terms, such
as those introduced by ℓ0 regularizers. Additionally,
the actionable set imposes constraints on how much
the CFE can change. Numerous methods have tackled
partial aspects of this problem, often tailoring their
approaches to specific classifiers, plausibility, or sparsity
constraints. For example, Artelt and Hammer [2020]
generate CFEs for simple linear classifiers and decision
trees, while Tsiourvas et al. [2024] focus on ReLU neural
networks (NNs) using the Local Outlier Factor (LOF)
metric as a plausibility constraint. For a comprehensive
survey, see [Verma et al., 2024].

Our Contributions:

1. We introduce S-CFE (Simple Counterfactual
Explanations), a simple method to solve the canon-
ical formulation in Eq. (1), using the Acceler-
ated Proximal Gradient (APG) method [Beck and
Teboulle, 2009].

2. Our method is capable of handling smooth non-
convex objectives and non-smooth ℓp (where 0 ≤
p < 1) regularizers. This enables our approach
to seamlessly incorporate various classifiers and
plausibility measures while producing sparser so-
lutions, that are actionable.

3. Extensive evaluations on real-world datasets show
significant improvements over existing methods,
particularly in sparsity and adherence to the data
manifold, which is crucial for generating meaning-
ful CFEs.

In summary, our proposed method addresses the key
challenges in generating CFEs, offering a practical and
effective tool for enhancing the interpretability of clas-
sifiers. This advancement is particularly valuable in
safety-critical domains, where understanding and trust-
ing classifier decisions is essential.

2 Related Work

CFEs have seen growing interest in recent years
[Wachter et al., 2017, Verma et al., 2024, Karimi et al.,
2020]. Most methods enforce sparsity by optimizing
weighted Manhattan or Mahalanobis distances between
the factual data and the generated CFE. Only recently
has the importance of plausibility in CFEs been rec-
ognized, prompting a focus on methods addressing
both sparsity and plausibility. For DNN-based clas-
sifiers, Dhurandhar et al. [2018] were among the first
to frame this as an unconstrained problem using the
ℓ1 norm for sparsity and VAEs trained on the data
distribution for plausibility. Building on Van Looveren

and Klaise [2021], Zhang et al. [2023] replace autoen-
coders with a density-based distance term for plausi-
bility, while adopting the elastic-net regularizer [Zou
and Hastie, 2005] for sparsity. They also highlight that
autoencoder-based approaches often struggle with data
quality issues, undermining the robustness and credi-
bility of CFEs. Artelt and Hammer [2020] formulate
a constrained optimization problem, using Gaussian
Mixture Models (GMMs) to ensure high target-class
density, with ℓ1−distance enforcing sparsity. The non-
convex GMM problem is approximated by solving con-
vex quadratic subproblems for each GMM component,
leveraging simple classifiers like generalized linear clas-
sifiers and linear SVMs. The recent paper of Tsiourvas
et al. [2024] takes a different approach, formulating a
mixed-integer programming (MIP) problem for ReLU
networks, using the Local Outlier Factor (LOF) for
plausibility and adding a sparsity constraint. The MIP
is solved efficiently by restricting the search to poly-
topes containing the correct class, but this framework
is limited to ReLU architectures.

3 Preliminaries

Assume a classification setting where X ⊆ Rd denotes
the input space, the discrete finite set Y denotes the set
of possible class labels, and D = {(xi, yi) ∈ X × Y}ni=1

is a dataset consisting of n independent and identically
distributed data points generated from a joint density
ψ : X × Y 7→ R+. Furthermore, we define q(x, y) :=
ψ(x|y), which is the corresponding density of the inputs
conditioned on the given label y.

We let fl : X → R|Y| denote a classifier that takes a
d-dimensional sample as input and outputs logits of
|Y| classes. The final decision is denoted by f(x) :=
argmaxi[fl(x)]i. Furthermore, let θp : X × X 7→ R+

be a distance function on X , such as the one given by
ℓp−(quasi) norm θp(x,x

′) := ∥x− x′∥pp =
∑d

i=1 |xi −
x′i|p, for x,x′ ∈ Rd and 0 < p < ∞. For p = 0, we
define θ0(x−x′) := ∥x−x′∥0 as the cardinality of the
support of x− x′. For d ∈ N let [d] = {1, ..., d}.

Definition 3.1 ([Parikh et al., 2014]). The proximal
operator with respect to a (possibly non-smooth) func-
tion g : Rd → R is defined for any x′ ∈ Rd

proxλg(x
′) := argmin

x∈Rd

1

2λ
θ2(x,x

′) + g(x),

where λ > 0 is a given parameter.

The proximal operator is particularly useful for analyz-
ing non-smooth functions g and can often be computed
analytically for many such functions.
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3.1 Background on CFEs

Definition 3.2. (Closest Data-Manifold CFE). Given
a factual data sample xf ∈ Rd such that f(xf ) = yf ,
its closest data-manifold CFE (in terms of θ2) with
respect to f(·) and the data manifold of the target class
ycf is defined as a point xcf ∈ X that is the solution
of the following optimization problem

xcf := argmin
x∈X

θ2(x,xf )

s.t. x ∈ A
f(x) = ycf

q(x, ycf ) ≥ τ,

(2)

where A :=×d

i=1
[−Ai,Ai], for Ai ∈ R, denotes the

value range for features, extracted from the observed
dataset or given by the user, and τ > 0 denotes a
minimum density at which we consider a sample to lie
in the data manifold of the target class ycf .

The objective function in Eq. (2) ensures the proximity
of the generated CFE, while the three constraints ac-
count for actionability, validity, and plausibility. With-
out the plausibility constraint, the closest CFEs often
deviate significantly from the data manifold (cf. Fig. 2),
leading to unrealistic and anomalous instances. This
underscores the importance of the plausibility term,
which ensures that the generated CFEs remain on the
data manifold.

To find the closest data-manifold CFEs while altering
as few features as possible, ensuring sparsity of the
generated CFEs, the non-smooth constrain θ0(x,xf ) ≤
m can be added to Eq. (2) as follows.

Definition 3.3. (Closest Sparse Data-Manifold CFE).
Given a factual data sample xf ∈ Rd such that f(xf ) =
yf , its closest sparse data-manifold CFE with respect
to f(·) and the data manifold of the target class ycf is
defined as a point xcf ∈ X that is the solution of the
following optimization problem

xcf := argmin
x∈X

θ2(x,xf )

s.t. x ∈ A
f(x) = ycf

q(x, ycf ) ≥ τ

θ0(x,xf ) ≤ m,

(3)

where m ∈ N is a parameter to explicitly control the
sparsity of the generated CFE.

While for the validity constraint in Eq. (3), common
measures such as checking if the CFE belongs to the
target class can be used, plausibility can be assessed
with a wider range of metrics. Techniques like k-nearest

neighbors, kernel density, and Mahalanobis distance
estimate whether a sample aligns with the data dis-
tribution. However, a widely used metric in the CFE
literature (e.g., [Zhang et al., 2023, Hamman et al.,
2023, Tsiourvas et al., 2024]) for assessing the similar-
ity or anomalous nature of a generated CFE relative to
the dataset D ⊆ X is the Local Outlier Factor [Breunig
et al., 2000].

Definition 3.4 (Local Outlier Factor (LOF)). For
x ∈ D, let Nk(x) = {x1, ...,xk} be the set of k−Nearest
Neighbors (k−NN) in D. The k−reachability distance
rdk of x with respect to x′ is defined by rdk(x,x

′) =
max{∥x − x′∥p, dk(x′)}, where dk(x′) is the ℓp-norm
distance between x′ and its k−th nearest instance in D.
The k−local reachability of x is defined by lrdk(x) =
|Nk(x)|(

∑
xi∈Nk(x)

rdk(x,xi))
−1. Then, the k−LOF

of x on D is defined as

LOFk,D(x) =
1

|Nk(x)|
∑

xi∈Nk(x)

lrdk(xi)

lrdk(x)
.

We consider p ∈ {1, 2,∞} and use LOF as a post-
process evaluation metric to measure whether the
learned closest sparse CFE follows the data mani-
fold. By convention, a value of LOFk,D(x) close
to 1 indicates that x is an inlier that is aligned
with the data manifold, while larger values (especially
LOFk,D(x) > 1.5) indicate that x is an outlier.

4 A Simple Algorithm for Generating
CFEs

There are two main issues with solving Eq. (3) in
practice.

1. Setting the sparsity constraint aside for the mo-
ment, the first problem arises from the fact that
the conditional distribution q(·, y) underlying the
data D is often unknown. One possible solution
is to incorporate plausibility constraints based on
density estimates or the LOF metric. Density es-
timators like Gaussian mixture models (GMM) or
kernel density estimation (KDE) are a common
approach to estimate the density for each class
based on training samples (see Appendix A). Then,
the plausibility constraint requires the resulting
CFE to lie near the data manifold by enforcing
q̂KDE(x, ycf ) ≥ τ , respectively q̂GMM (x, ycf ) ≥ τ .
Similarly, the LOF metric can be used, by requir-
ing LOFk,D(x) ≤ ν, for a user-defined threshold ν.
However, this highly non-linear constraint (either
using density-based estimates or the LOF met-
ric) results in the density estimator being highly
non-convex, thus further exacerbating the known
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computational challenges in optimizing non-linear
classifiers (e.g., NNs). This is why Artelt and
Hammer [2020] solve the problem only for sim-
ple linear classifiers and decision trees, leverag-
ing linearized GMMs for plausibility, resulting in
convex quadratic subproblems. Tsiourvas et al.
[2024] on the other hand, use LOF as a plausibility
constraint and approximate the complex mixed-
integer optimization (MIP) problem by considering
it only for ReLU NNs, known for their piece-wise
linear structure [Lee et al., 2019], and solve the
MIP only over polytopes consisting of points of
the correct class.

2. Enforcing the sparsity constraint in Eq. (3)
through the non-smooth θ0−distance is well known
to be an NP-hard problem. Consequently, prior
works of Dhurandhar et al. [2018], Artelt and Ham-
mer [2020] and Zhang et al. [2023], mostly relax
the sparsity constraint to θ1 and consider the reg-
ularized version of Eq. (3).

4.1 Problem Relaxation and Solution
Heuristic

For the actionability constraint in Eq. (3), we can
utilize the indicator function such that

IA(x) :=

{
0, if x ∈ A,
+∞, otherwise.

(4)

To address the combinatorial optimization problem in
Eq. (3) we make use of the following relaxations. First,
we formulate the closest sparse data-manifold CFE
problem by replacing the validity, plausibility, and spar-
sity constraints with penalty terms, where for sparsity
instead of the θ1−distance regularization we consider
any sparsity-inducing θp−distance as a penalty. We
incorporate the box constraints as indicator functions

xcf := argmin
x∈Rd

θ2(x,xf ) + IA(x) + γLf (x, ycf )

− τ q̂(x, ycf ) + βθp(x,xf ),
(5)

where we consider an estimate q̂(·, ycf ) for the density
of target class ycf in X , and Lf is a suitable (differ-
entiable) classification loss. γ, τ > 0 denote tradeoff
parameters for validity and plausibility. The only re-
quirement for the plausibility term q̂(·, ycf ) is to be
differentiable so that we are able to learn from its
gradient information.

We solve the problem in Eq. (5) by making use of
a commonly used algorithm for non-convex and non-
smooth programs, based on accelerated proximal gra-
dient (APG) method [Beck and Teboulle, 2009].

We start by denoting h(x, ycf ) := θ2(x,xf ) +
γLf (x, ycf ) − τ q̂(x, ycf ) and gp(x) := IA(x) +

βθp(x,xf ). Assuming h(·, ycf ) is a smooth, possibly
non-convex function, whose gradient has Lipschitz con-
stant L, we make a quadratic approximation h̃L(x, ycf )
to h(x, ycf ) and replace ∇2h(x, ycf ) by L

2 I. Given
iterate xt of the algorithm, it holds that

xt+1 := argmin
x∈Rd

h̃L(x
t, ycf ) + gp(x)

= argmin
x∈Rd

∇xth(xt, ycf )
⊤(x− xt) +

L

2
θ2(x,x

t)

+ gp(x)

= argmin
x∈Rd

L

2
θ2

(
x,xt − 1

L
∇xth(xt, ycf )

)
+ gp(x)

= prox 1
L gp

(
xt − 1

L
∇xth(xt, ycf )

)
.

(6)
In practice, the inverse Lipschitz constant is further
replaced by a step size sequence (σt)t∈N [Karimi et al.,
2016]. In order to solve the proximal operator in
Eq. (6) for the function gp(·), we first need to compute
∇xth(xt, ycf ), which we will denote as ∇xh(x, ycf ) for
simplicity in the following sections.

4.1.1 Computing ∇xh(x, ycf )

As long as we use differentiable terms for proximity,
classifier loss function, and the density term, any suit-
able differentiation technique can be applied to com-
pute ∇xh(x, ycf ), and we use backpropagation in our
experiments.

As for q̂(x, ycf ), we adopt traditional differentiable
estimates, such as KDE (q̂KDE(x, ycf )) and GMM
(q̂GMM (x, ycf )). For completeness, we also consider
a recently proposed density term based on the LOF
metric. Zhang et al. [2023] consider an approximation
to LOF given by density gravity on an instance - G(x)
(see Definition A.3). A suitable plausibility term then
minimizes the ℓ2−distance between the CFE x and the
density gravity point Gycf

(xf ), generated by a convex
combination of k−nearest neighbors of the factual data
point belonging to the target class ycf , weighted by
their local density

q̂kNN (x, ycf ) := −
∥∥x−Gycf

(xf )
∥∥
2
.

The choice of plausibility term (q̂KDE , q̂GMM , or q̂kNN )
leads to different algorithm variants: S-CFEKDE, S-
CFEGMM, and S-CFEkNN.

4.2 Computing the Proximal Operator

After computing ∇xh(x, ycf ) as outlined in Sec. 4.1.1,
we define Sσ(x, ycf ) = x−σ∇xh(x, ycf ). The solution
to the proximal operator in Eq. (6) for p = 0 is detailed
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in Zhu et al. [2021]. Notably, our approach is quite
general; similar results can be derived for any θp, with a
straightforward proximal operator (e.g., p ∈ {1/2, 2/3}
[Cao et al., 2013]). The method proposed by Zhang
et al. [2023] is a specific case using θ1 and the density
gravity term for plausibility.

We summarize our procedure in Algorithm 1. This
method generates sparse, manifold-aligned CFEs, but
we cannot precisely control the number of features that
change.

4.2.1 Constraining the Sparsity

Rather than penalizing sparsity in Eq. (5), we can
regularize using the indicator function of the sparsity
constraint for improved control. This approach begins
with the observation that

Iθp(x,xf )≤m(x) :=

{
0, if θp(x,xf ) ≤ m,

+∞, otherwise.

Thus, problem in Eq. (5) can be reframed as

xcf := argmin
x∈Rd

θ2(x,xf ) + IA(x) + γLf (x, ycf )

− τ q̂(x, ycf ) + βIθp(x,xf )≤m(x).
(7)

Since the new function gp(x) := IA(x) +
βIθp(x,xf )≤m(x) is an indicator function, its proximal
operator for p = 0 coincides with the projection onto
the intersection {θ0(x,xf ) ≤ m}∩A of a 0−norm ball
and our box constraints. A closed-form solution for
this projection was derived by Croce and Hein [2019]
and is given by

[
P{θ0(x,xf )≤m}∩A(Sσ(x, ycf ))

]
i
=

{
zi, if i ∈ Q,

0, otherwise,

z = ΠA(Sσ(x, ycf )),

Q = argtopk(v,m),

where v = w⊙w− (w−z)⊙ (w−z) with w = x−xf

and ⊙ the element-wise product, argtopk(v,m) rep-
resents the indices corresponding to the m largest
absolute values of the entries of v, and ΠA(x) =
argminx{∥x′ − x∥2

∣∣ x′ ∈ A}.
Remark 4.1. Since g0(x) := IA(x)+βIθ0(x,xf )≤m(x)
is a proper and lower semicontinuous function, the con-
vergence of APG to a critical point of the minimization
problem specified in Eq. (7) can be assured (even for
non-convex and non-smooth g0(·)), under some mild
conditions [Li and Lin, 2015].

5 Experiments

We conduct experiments on four real-world datasets
to validate our methods against various benchmarks.

Algorithm 1 S-CFE: Simple Counterfactual Explana-
tions
Input: Classifier f , density penalty q̂, sparsity penalty

θp, classification loss function Lf , feature ranges A,
original point xf ∈ Rd, target label ycf , parameters of
the objective function β, γ, τ , extrapolation parameters
(αt), step sizes (σt), number of iterations T .

Output: xcf ∈ Rd the CFE of xf .
1: Initialize x0,z0 ← 0 ∈ Rd.
2: h(x, ycf ) := θ2(x,xf ) + γLf (x, ycf )− τ q̂(x, ycf )

3: gp(x) := IA(x) + βθp(x,xf )

4: for t = 0, ..., T − 1 do
5: rt+1 ← ∇zth(zt, ycf )

6: Sσt+1(z
t+1, ycf )← zt − σt+1r

t+1

7: xt+1 ← proxσt+1gp
(Sσt+1(z

t+1, ycf ))

8: zt+1 ← xt+1 + αt+1(x
t+1 − xt)

9: end for
10: return xT =: xcf

All computations are performed using Python 3.12
[Van Rossum and Drake, 2009], PyTorch 2.4.1 [Paszke
et al., 2019], and Scikit-learn 1.5.2 [Buitinck et al.,
2013], utilizing eight cores of an Intel Xeon Gold 6342
CPU @ 2.80GHz with 16GB of memory. Our codes are
available at https://github.com/wagnermoritz/SCFE.

5.1 Setup

5.1.1 Datasets

We use the Boston Housing dataset (d = 12) [Harrison
and Rubinfeld, 1978] to predict whether the median
house value exceeds a threshold, the Breast Cancer
Wisconsin dataset (d = 30) [H. Wolberg and Street,
1995] to classify malignant versus benign tumors, Wine
dataset [Aeberhard et al., 1992] for wine quality classifi-
cation, and the MNIST dataset [Asuncion et al., 2007]
for handwritten digit classification. All continuous fea-
tures are scaled using a min-max scaler to the [0, 1]
range. MNIST consists of 60,000 training images and
10,000 test images, while the other datasets are split
with 100 test points.

5.1.2 Method Implementation

For the experiments, we consider a 2−layer, densely
connected ReLU network with 20 neurons per hid-
den layer for the smaller datasets, and a convolutional
neural network (CNN) consisting of two convolutional
layers followed by three densely connected layers for the
MNIST dataset, as the underlying machine learning
models that give predictions. We train each network
with a learning rate of 10−3 using the Adam optimizer.
The densely connected networks are trained using a

https://github.com/wagnermoritz/SCFE
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batch size of 32 for 20 epochs and the CNN is trained
using a batch size of 128 for 80 epochs. All classifiers
reach an accuracy above 95% on the test data.

Following Alibi Explain [Klaise et al., 2021], we conduct
a logarithmic grid search over [10−3, 103]2 for β and τ ,
and perform a section search with 10 steps for γ for
each test instance. For binary classifiers f : X → [0, 1]
we utilize the classification loss with ycf ∈ {0, 1}

Lf (x, ycf ) := max{(1− 2ycf )f(x),−c},

and for multi-class classifiers f : X → R|Y| with ycf ∈
{1, ..., |Y|} we use

Lf (x, ycf ) := max{max{fi(x) | i ̸= ycf} − fycf
(x),−c},

where x a datapoint of class ycf and c is the cut-off
parameter for the hinge loss. Similar to most adversar-
ial attacks utilizing the Hinge Loss (or Carlini-Wagner
loss) [Carlini and Wagner, 2017], we set its threshold to
c = 0. Following Zhang et al. [2023], in the S-CFEkNN
approach, we use 3, 4, and 5 for the grid search of near-
est neighbors k, as higher values tend to confuse the
classifier and degrade performance (see Appendix B).

In line with Beck and Teboulle [2009], we use the
sequence (αt) of extrapolation parameters defined by

βt =
1

2

(
1 +

√
1 + 4β2

t−1

)
, αt =

βt − 1

βt+1
, (8)

with β0 = 0. The sequence of step sizes (σt) is given
by an initial step size σ0 and a square-root decay

σt+1 = σt

√
1− t

tmax
,

where tmax is the maximum number of iterations. We
run all the methods for a total of 200 iterations.

5.1.3 Evaluation Metrics

In our experiments, we report validity, defined as the
ratio of CFEs with the desired class label multiplied
by 100%. We measure proximity using the ℓ2−norm,
∥xcf − xf∥2, and sparsity using the ℓ0−(quasi) norm,
∥xcf − xf∥0, where xcf is the generated CFE and xf

the original factual point. To assess plausibility, we
use the LOF metric (Definition 3.4) to determine how
much a generated CFE deviates from the data manifold,
based on its k nearest neighbors in D. The scikit-learn
implementation of LOF is used with default parame-
ters. Additionally, we report the average runtime per
method.

5.2 Results

Proximity, sparsity, and plausibility are often conflict-
ing objectives, as data near the decision boundary is

typically sparse, and small shifts across it can yield
implausible CFEs [Van Looveren and Klaise, 2021,
Dandl et al., 2024]. By applying our S-CFE algorithm
with various plausibility terms, and the constrained
θ0−metric via indicator functions to achieve sparsity,
we are able to generate sparse, plausible CFEs that
remain close to the factual data points and maintain
the computation speed.

5.2.1 Quantitative Evaluation

As Artelt and Hammer [2020] consider only linear clas-
sifiers and decision trees, Tab. 1 reports results for
logistic regression classifiers on the Housing and Wine
datasets, including the CFE validity, average proxim-
ity, average sparsity, plausibility (measured via LOF),
and generation time for both CFE algorithms. Tab. 2
presents the same metrics for the Housing, Wine, and
MNIST datasets using a CNN classifier, comparing vari-
ants of our method against [Dhurandhar et al., 2018,
Zhang et al., 2023].

In terms of validity, S-CFE consistently outperforms
other methods (e.g., on MNIST), generating the de-
sired CFE for nearly all original points. Thanks to
our formulation in Eq. (7), we control the number of
altered features, setting it to 1 in Tab. 1 and 2 in Tab. 2,
producing the sparsest CFEs. The integration of differ-
entiable plausibility terms guides the search towards
high-density regions, resulting in the lowest LOF. This
allows us to generate superior sparse, manifold-aligned
CFEs compared to benchmark works of Dhurandhar
et al. [2018], Artelt and Hammer [2020] and Zhang et al.
[2023]. Additionally, we achieve comparable or slightly
better proximity to factual data while maintaining low
computation time, underscoring the simplicity of our
method. See Tab. 3 and Tab. 4 in Appendix D for
additional experiments.

Note that CEM [Dhurandhar et al., 2018] can only
be applied to binary classification datasets, where the
goal is to find CFEs for a certain target class. Their
pertinent positives represent the minimal set of fea-
tures required to maintain the current classification,
while pertinent negatives are the minimal set needed
to change the classification. In datasets like MNIST,
the altered class could be any of the nine remaining
classes (e.g., a “9” could change into any class other
than “4”), making CEM unsuitable for targeted CFEs
in multi-class scenarios.

Tsiourvas et al. [2024], on the other hand, reference
a link to an empty repository, hindering result repro-
ducibility. The MIP formulation of Tsiourvas et al.
[2024] faces scalability issues with complex networks,
addressed by limiting the search to a few live poly-
topes from the correct class. However, this partition-
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Table 1: CFEs for linear classifiers on the Boston Housing and Wine datasets. Dimensionality was reduced to 8 using
PCA, with 100 test points assessed. Compute time is reported in seconds per 100 CFEs. The best values for each dataset
are highlighted. The method proposed by Artelt and Hammer [2020] is referred to as PCFE.

Dataset Method Validity (std) ℓ2 (std) ℓ0 (std) LOF (std) Time

Housing
8 features

S-CFEKDE 100 (0.00) 3.06 (1.42) 1.00 (0.00) 1.22 (0.27) 11.8
S-CFEGMM 100 (0.00) 2.62 (1.25) 1.00 (0.00) 1.20 (0.27) 12.1
S-CFEk−NN 100 (0.00) 2.51 (1.19) 1.00 (0.00) 1.34 (0.58) 4.61

PCFE 100 (0.00) 1.61 (1.03) 1.13 (0.87) 1.31 (0.57) 26.7

Wine
8 features

S-CFEKDE 100 (0.00) 2.10 (1.10) 1.00 (0.00) 0.98 (0.01) 9.88
S-CFEGMM 100 (0.00) 2.09 (1.10) 1.00 (0.00) 0.98 (0.02) 11.4
S-CFEk−NN 100 (0.00) 2.15 (1.12) 1.00 (0.00) 0.99 (0.02) 4.50

PCFE 100 (0.00) 1.39 (1.02) 1.37 (0.96) 0.99 (0.02) 22.3

Table 2: CFEs for DNN classifiers on the Boston Housing and Wine datasets, and for a CNN classifier on the MNIST
dataset. Evaluated on 1000 test points for MNIST and 100 test points for the other two datasets. The compute time is
given in seconds per 100 CFEs. The best values for each dataset are highlighted. The methods proposed by Zhang et al.
[2023] and Dhurandhar et al. [2018] are referred to as DCFE and CEM, respectively.

Dataset Method Validity (std) ℓ2 (std) ℓ0 (std) LOF (std) Time

Housing
12 features

S-CFEKDE 100 (0.00) 2.59 (1.21) 2.00 (0.00) 1.23 (0.29) 12.7
S-CFEGMM 100 (0.00) 2.91 (1.38) 2.00 (0.00) 1.12 (0.26) 13.3
S-CFEkNN 100 (0.00) 3.64 (1.73) 2.00 (0.00) 1.17 (0.31) 5.85

DCFE 100 (0.00) 3.50 (1.68) 6.86 (1.42) 1.27 (0.38) 5.33
CEM 94.0 (0.23) 2.93 (2.23) 2.99 (1.17) 1.36 (0.60) 7.51

Wine
13 features

S-CFEKDE 100 (0.00) 3.31 (1.16) 2.00 (0.00) 0.99 (0.01) 12.4
S-CFEGMM 100 (0.00) 3.44 (1.09) 2.00 (0.00) 0.98 (0.02) 13.1
S-CFEk−NN 100 (0.00) 4.04 (1.59) 2.00 (0.00) 1.01 (0.07) 5.80

DCFE 100 (0.00) 3.21 (2.70) 7.13 (1.31) 1.03 (0.18) 4.95
CEM 92.0 (0.29) 5.40 (3.25) 5.14 (2.68) 1.07 (0.14) 5.71

MNIST
784 features

S-CFEGMM 99.1 (0.09) 6.74 (2.92) 25.0 (0.00) 1.21 (0.18) 55.3
S-CFEk−NN 99.8 (0.04) 7.04 (2.99) 25.0 (0.00) 1.30 (0.22) 13.1

DCFE 99.3 (0.08) 8.06 (3.48) 118 (6.30) 1.32 (2.24) 11.8

ing is restricted to ReLU NNs and often compromises
plausibility. Fig. 5 conceptually shows our method
outperforming MIP-Live in terms of plausibility on
their simple example, and we conjecture this advan-
tage extends to higher dimensions, as their approach
overly constrains the search space, leading to a poor
sparsity-plausibility tradeoff. Moreover, limiting the
method to ReLU networks ignores the growing success
of other architectures with other nonlinearities than
ReLU (e.g., Swin transformers in Computer Vision us-
ing GELU activations [Liu et al., 2021]). In contrast,
our approach supports any architecture that utilizes
standard gradient computation techniques like back-
propagation. Consequently, we exclude MIP-Live from
our experiments.

5.2.2 Robustness of Plausible CFEs to Input
Manipulations

CFEs without plausibility constraints have been shown
to diverge significantly with even minor input pertur-
bations, underscoring their lack of robustness [Slack
et al., 2021]. This presents a challenge for CFEs, as

two similar individuals may receive drastically differ-
ent explanations. In contrast, incorporating plausibil-
ity constraints improves robustness against such input
shifts, enhancing the individual fairness of CFEs [Artelt
et al., 2021, Zhang et al., 2023]. Fig. 3 demonstrates
that sparse, manifold-aligned CFEs generated with
various plausibility regularizers further enhance robust-
ness against input shifts. For additional results across
various datasets and different sparsity modes, refer to
Fig. 6 in Appendix D.

6 Conclusion and Discussion

We introduced “S-CFE”, a novel yet simple framework
for generating sparse and plausible counterfactual ex-
planations. Our method is based on proximal gradient
techniques for non-convex and non-smooth optimiza-
tion, offering enhanced control over feature changes
and leveraging density estimates to ensure plausibility.
Extensive experiments demonstrate that S-CFE outper-
forms existing methods in producing sparse, plausible
CFEs while maintaining proximity to input data and
computational efficiency.



Sadiku, Wagner, Nagarajan, Pokutta

0 0.5 1

0

1

2

3

ℓ2−norm input

ℓ 2
−

no
rm

ou
tp

ut
Boston Housing, p = 0

0 0.5 1

0

1

2

3

ℓ2−norm input

Boston Housing, p = 1

0 0.5 1

0

1

2

3

ℓ2−norm input

Wisconsin, p = 0

0 0.5 1

0

1

2

3

4

ℓ2−norm input

Wisconsin, p = 1

No Plaus. KDE GMM k-NN

Figure 3: Robustness of the different methods. The distance of the input data points to the original data points on the
x-axis and the distance of the generated CFEs to the CFE generated from the original data points on the y-axis. Tested
on 100 data points from each data set.

Limitations and Broader Impact: Sparse plausi-
ble CFEs highlight which feature changes may lead to
different predictions but offer no guidance on real-world
interventions for achieving the desired outcome, which
requires causal knowledge. Improving the underlying
target is more important than merely gaining predictor
acceptance [Tsirtsis and Gomez Rodriguez, 2020]. For
example, altering symptoms may change a COVID-19
diagnosis, but not the actual infection status [König
et al., 2023]. Our method acts as an adversary, guiding
users toward simple changes for predictor acceptance
without improving the real-world state. Future work
will explore training S-CFE directly on data rather
than relying on classifier predictions.
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Checklist

1. For all classifiers and algorithms presented, check
if you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or classifier.
Yes

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
Yes. Specifically, for each algorithm
we report the average runtime and the
sample size.

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. Yes

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. Yes

(b) Complete proofs of all theoretical results. Yes
(c) Clear explanations of any assumptions. Yes

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
Yes

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). Yes

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). Yes

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). Yes

4. If you are using existing assets (e.g., code, data,
classifiers) or curating/releasing new assets, check
if you include:

(a) Citations of the creator If your work uses
existing assets. Yes

(b) The license information of the assets, if appli-
cable. Yes

(c) New assets either in the supplemental material
or as a URL, if applicable. Yes

(d) Information about consent from data
providers/curators. Not Applicable

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. Not Applicable

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. Not Applicable

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. Not Applicable
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(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. Not Applicable
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Appendix

A Density Estimate Instances

Definition A.1. A kernel density estimator (KDE) q̂KDE is defined as

q̂KDE(x) =

m∑
i=1

wik(x,xi),

where k(·, ·) denotes a suitable kernel function, xi denotes the i−th correctly classified sample in the training data
set and wi > 0 denotes the weighting of the i−th sample.

For the KDE plausibility term, we utilize a Gaussian normal kernel of bandwidth parameter σ > 0 (standard
choice from Racine et al. [2008]) k(x,xi) := e−θ2(x,xi)/2σ

2

for correctly classified points xi and we set wi = 1/m,
for i ∈ [m].

Definition A.2. A Gaussian mixture classifier (GMM) q̂GMM with m components is defined as

q̂GMM(x) =

m∑
i=1

πiN (x|µi,Σi),

where πi represents the prior probability of the i−th component, µi and Σi denote the mean and covariance of the
i−th component, a d−dimensional Gaussian density.

Definition A.3. (Density Gravity on an Instance ([Zhang et al., 2023]) For x ∈ D, let Nk(x) = {x1, ...,xk} be
the set of k−NNs of x in D. The k−local density of x is defined by ρ(x) = |Nk(x)|(

∑
xi∈Nk(x)

∥x−xi∥p)−1. The
set of relative local densities {ρ̂1, ..., ρ̂k} of the points in Nk(x) is the result of normalization as ρ̂i = ρi∑k

i=1 ρi
, ρi ≥

0, i ∈ [k]. Then, the density gravity G of x on D is defined as

G(x) =

k∑
i=1

ρ̂ixi, where xi ∈ Nk(x),

k∑
i=1

ρ̂i = 1, and ρ̂i ≥ 0.

Note that the maximum operator rdk(x, ·) of Definition 3.4 is linearized for simplicity. In simple words, the
density gravity of x, finds the closest point G(x) that lies in a high-density data region by finding a convex
combination of k−nearest neighbors of x weighted by their local density. Note that by definition, the local density,
denoted by ρ(x) in Definition A.3, is higher for a point x if it has more neighbors that are closer to it.

B Issues with Using Many Neighbors for the S-CFEkNN Approach

In Fig. 4 we experiment with choosing different neighbors for the plausibility term given by density gravity, which
minimizes the distance between the CFE and a point in the convex combination of the k−nearest neighbors of
given factual data point, weighted by their local density. Choosing higher values of k results in neighbors being
chosen from different high-density areas of correctly classified data points, thus the density gravity point can
result in low-density areas (as can be seen in the middle and the right figure in Fig. 4).
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(a) k=3 (a) k=10 (b) k=24

Figure 4: A toy example illustrating the positioning of convex combinations of k−NNs obtained via density gravity relative
to the original points.

C Our S-CFE Approach vs MIP-LIVE-m=1
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Figure 5: Example reproduced from Tsiourvas et al. [2024]. Compares geometrically MIP-Live-m=1 [Tsiourvas et al., 2024]
vs. our S-CFE approach. The generated CFE of our method resides in a high-density region and is sparse. MIP-Live-m=1
considerably restricts the working space - the small bounded red region, and uses only 1 neighbor for the LOF manifold
adhering constraint.

D Additional Experiments

We provide additional results in Tab. 3 and Tab. 4, demonstrating that our method generates sparse, manifold-
aligned CFEs that closely follow the data manifold while maintaining efficient computation times. These findings
align with Sec. 5.2.1.

We exclude CEM [Dhurandhar et al., 2018] from further experiments since Zhang et al. [2023] already benchmark
against it. Instead, we present additional results using the closed-form solution for the proximal operator in
Eq. (6) for p = 1/2 [Cao et al., 2013, Lin et al., 2024]. The solution, for i ∈ [d] and the inverse Lipschitz constant
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Table 3: CFEs for linear classifiers on the Boston Housing and Wine datasets. The dimensionality of both datasets has
been reduced to 8 using PCA. Evaluated 100 test points. The S-CFE p = 0 variants use sparsity constraints, while the
other variants use the corresponding norm as a regularizer. The compute time is given in seconds per 100 CFEs. The
compute time is given in seconds per 100 CFEs. We denote by DCFE and PCFE the methods proposed by Zhang et al.
[2023] and Artelt and Hammer [2020], respectively.

Dataset Method Validity ℓ2 ℓ0 LOF KDE GMM Time

Wine
8 features

PCA

S-CFEKDE p = 0 100 2.10 1.00 0.98 -2.61 -19.0 9.88
S-CFEKDE p = 1

2 100 1.93 1.52 0.98 -2.71 -19.1 12.6
S-CFEKDE p = 1 100 2.11 2.02 0.99 -2.68 -23.5 11.0

S-CFEGMM p = 0 100 2.09 1.00 0.98 -2.86 -14.3 11.4
S-CFEGMM p = 1

2 100 2.86 1.31 0.99 -2.89 -15.3 13.6
S-CFEGMM p = 1 100 2.40 2.00 0.99 -3.01 -20.1 11.6

S-CFEk−NN p = 0 100 2.15 1.00 0.99 -2.92 -19.8 4.50
S-CFEk−NN p = 1

2 100 2.49 1.55 1.01 2.93 -20.9 4.79
DCFE 100 2.08 1.99 1.01 -2.96 -23.4 3.49

PCFE 100 1.39 1.37 0.99 -2.93 -20.6 22.3

Housing
8 features

PCA

S-CFEKDE p = 0 100 3.06 1.00 1.22 -2.55 -14.1 11.8
S-CFEKDE p = 1

2 100 2.82 1.31 1.20 -2.69 -15.8 13.2
S-CFEKDE p = 1 100 2.14 2.44 1.23 -2.75 -14.8 10.3

S-CFEGMM p = 0 100 2.62 1.00 1.20 -2.89 -10.8 12.1
S-CFEGMM p = 1

2 100 3.01 1.92 1.23 -2.84 -11.3 12.5
S-CFEGMM p = 1 100 2.73 3.19 1.26 -2.92 -11.6 12.0

S-CFEk−NN p = 0 100 2.51 1.00 1.34 -3.01 -14.2 4.61
S-CFEk−NN p = 1

2 100 3.05 1.87 1.38 -3.01 -20.8 4.48
DCFE 100 3.05 3.22 1.31 -2.99 -16.6 4.17

PCFE 100 1.61 1.13 1.31 -3.06 -11.4 26.7

L replaced by a step size sequence (σt)t∈N, is given by

[xt+1
cf, 12

]i =

 2
3 [Sσt(x

t, ycf )]i

(
1 + cos

(
2π
3 − 2ϕ2βσt ([Sσt (x

t,ycf )]i)

3

))
, if |[Sσt(x

t, ycf )]i| > g(2βσt),

0, otherwise,

where ϕ2βσt
([Sσt

(xt, ycf )]i) = arccos

(
βσt

4

(
|[Sσt (x

t,ycf )]i|
3

)− 3
2

)
, and g(2βσt) =

3√54
4 (2βσt)

2
3 .

Results in Fig. 6 of Appendix D further confirm findings of section Sec. 5.2.2 that our S-CFE generated CFEs are
robust to input shifts.



S-CFE: Simple Counterfactual Explanations

Table 4: CFEs for DNN classifiers on the Boston Housing Wine datasets, and for a CNN classifier on the MNIST dataset.
Evaluated on 1000 test points for MNIST and 100 test points for the other two datasets. The S-CFE p = 0 variants use
sparsity constraints, while the other variants use the corresponding norm as a regularizer. The compute time is given in
seconds per 100 CFEs. We denote by DCFE the method proposed by Zhang et al. [2023].

Dataset Method Validity ℓ2 ℓ0 LOF KDE GMM Time

Housing
12 features

S-CFEKDE p = 0 100 2.59 2.00 1.23 -2.91 -15.3 12.7
S-CFEKDE p = 1

2
100 2.41 2.78 1.18 -2.87 -16.8 14.5

S-CFEKDE p = 1 100 2.52 6.30 1.27 -3.02 -17.7 12.3

S-CFEGMM p = 0 100 2.91 2.00 1.12 -3.23 -12.8 13.3
S-CFEGMM p = 1

2
100 2.74 3.09 1.17 -3.55 -13.6 15.1

S-CFEGMM p = 1 100 2.76 5.76 1.24 -3.47 -14.1 12.6

S-CFEk−NN p = 0 100 3.64 2.00 1.17 -3.08 -17.6 5.85
S-CFEk−NN p = 1

2
100 3.61 4.04 1.20 -3.31 -19.1 6.04

DCFE 100 3.50 6.86 1.27 -3.49 -20.7 5.33

Wine
13 features

S-CFEKDE p = 0 100 3.31 2.00 0.99 -2.87 -24.1 12.4
S-CFEKDE p = 1

2
100 3.30 5.40 0.98 -2.76 -21.8 11.8

S-CFEKDE p = 1 100 2.83 6.73 1.00 -2.85 -25.4 12.3

S-CFEGMM p = 0 100 3.44 2.00 0.98 -3.11 -14.8 13.1
S-CFEGMM p = 1

2
100 3.83 5.73 0.99 -2.98 -15.9 12.6

S-CFEGMM p = 1 100 3.08 6.98 1.01 -3.05 -16.2 13.1

S-CFEk−NN p = 0 100 4.04 2.00 1.01 -3.17 -37.9 5.80
S-CFEk−NN p = 1

2
100 3.71 6.82 1.02 -3.66 -40.2 5.72

DCFE 100 3.21 7.13 1.03 -3.77 -42.1 4.95

MNIST
784 features

S-CFEGMM p = 0 99.1 6.74 25.0 1.21 - -1058 55.3
S-CFEGMM p = 1

2
98.4 7.12 77.4 1.34 - -1112 57.3

S-CFEGMM p = 1 99.3 8.07 115 1.47 - -1132 54.2

S-CFEk−NN p = 0 99.8 7.04 25.0 1.30 - -1075 13.1
S-CFEk−NN p = 1

2
99.9 8.13 80.9 1.20 - -1069 12.7

DCFE 99.3 8.06 118 1.32 - -1122 11.8
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Figure 6: Robustness of the different methods. The distance of the input data points to the original data points on the
x-axis and the distance of the generated CFEs to the CFE generated from the original data points on the y-axis. Tested
on 100 data points from each data set.
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