
Technische Universität München

Department of Mathematics

Master’s Thesis

Adversarial Deformations

for

Neural Ordinary Di↵erential Equations

Shpresim Sadiku

Supervisor: Prof. Dr. Michael Wolf

Advisor: Prof. Dr. Michael Wolf

Submission Date: May 11, 2020

Babait tim

To my father

I assure the single handed composition of this master’s thesis only supported by declared

resources.

Garching,

Abstract

Neural networks have celebrated impressive success in practice in many recog-

nition and classification tasks. Mathematically, yet, their inner workings are poorly

understood. Neural network architectures for object classification have been shown

to be unstable to the so-called adversarial attacks, achieved by small perturbations

of the correctly classified image, imperceptible for the human eye. This questions

the usage of neural networks in safety and security critical applications. In this

context, the thesis examines classical and modern results in neural networks parti-

tioned into two key fragments.

The first part exploits the algorithmic stability in a general setting while inspecting

functions with good stability properties. Next, the emphasis is given to function

classes represented by neural networks and their density within di↵erent function

spaces under various assumptions on the activation function, to then motivate the

e�ciency of deep neural networks over the shallow neural networks.

In the second part, instead of specifying a discrete sequence of hidden layers, the

derivative of the hidden state is parameterized using a neural network. We present a

concise optimal control optimization approach to such continuous-depth models by

discussing ideas and algorithms derived from the optimality conditions of the pow-

erful Pontryagin’s Maximum Principle. The new emerging field of constant memory

cost models, however, is vulnerable to adversarial attacks. Apart from highlighting

the inconsistency of neural networks theoretically, we experiment with adversarial

deformations for neural ordinary di↵erential equations on MNIST and compare our

results to convolutional neural network-based architectures.

Acknowledgments

I express my sincere gratitude to my supervisor, Prof. Michael Wolf, for the guidance and

encouragement throughout my work. I am especially grateful for the generous recommen-

dation to elite doctoral programs. Also, I would like to thank Prof. Donna Ankerst and

Prof. Felix Krahmer for playing key roles in shaping my path to a PhD in mathematics.

I am indebted to my friends for their support at all times.

Faleminderit dy prindërve të mi. Faleminderit, Liri dhe Ilir.

Notation

Probability Theory

Expectations with respect to some probability measure P and P n over a sequence (of n

elements) of input-output pairs S will be denoted by E [.] and ES [.], respectively. We

denote ES⇠Pn to emphasize that S is distributed according to P n. PS [A] denotes the

probability of an event A with respect to P n.

General

Let t denote a real number, which will be called time. Let 1X denote the indicator function

on a set X. For n 2 N let [n] = {1, ..., n}. A bold lowercase variable, x, denotes a vector

which is an element of Euclidean space Rn for some 1 n < 1. The transpose of the

vector x and matrix X are denoted by x
0,X0. The inner product of two vectors x,y 2 Rn

will be written as hx,yi = x · y = x
0
y. We denote by kxk2 the ordinary Euclidean norm

of a vector x 2 Rn . Thus

kxk2 =

nX

i=1

(xi)
2

! 1
2

.

In general, denote the p-(quasi)norm, i.e. `p norm, of x 2 Rn for 0 < p < 1 by kxk
p
=

(
P

n

i=1 |xi|
p)1/p, which is a quasi-norm for p 2 (0, 1) and a norm otherwise. The infinity

norm of a vector is denoted by kxk1 = maxi2[n] |xi|. Denote by kxk0 = {i 2 [n] : xi 6= 0}

the `0 norm (even though it is not a norm). Sn�1 denotes the surface of the `2-unit norm

ball in Rn, i.e. Sn�1 = {x 2 Rn : kxk2 = 1}. Let Bp

r
(x) = {y 2 Rn : ky�xkp < r} be the

open `p-ball of radius r around x in Rn. Let @K and int(K) denote the boundary and the

interior of a set K ⇢ Rn.

Let f : Rn
! R be a di↵erentiable function at x 2 Rn. The gradient of f at x is a

vector-valued function

@f

@x
(x) = rf(x) =

2

664

@1f(x)
...

@nf(x)

3

775 2 Rn

whose components

@if : Rn
! R, x 7!

@f

@xi

(x), for i 2 [n]

denote its partial derivatives. As a special case, di↵erentiation with respect to a subset y

of the variables x1, ..., xn is denoted by ryf(x), and contains the partial derivatives of f

with respect to the xi’s which are in y.

Let F = (F1, ..., Fm) : Rn
! Rm be a di↵erentiable function at x 2 Rn. The derivative of

F at x is denoted by @F

@x (x), or simply DxF . It is a linear mapping Rn
! Rm represented

by the Jacobian matrix

2

664

@F1
@x (x)0

...
@Fm
@x (x)0

3

775 =

2

664

@1F1(x) · · · @nF1(x)
...

. . .
...

@1Fm(x) · · · @nFm(x)

3

775 .

Di↵erentiation with respect to a subset y of the variables x1, ..., xn is denoted by @F

@y (x),

and contains the partial derivatives of F with respect to the xi’s which are in y. For a

function f denote by supp(f) the set supp(f) = {x|f(x) 6= 0}.

Function Spaces

Lp(⌫) denotes the space of all measurable functions f : Rn
! R such that

kfkp =

✓Z

Rn

|f(x)|pd⌫(x)

◆1/p

< 1.

Abbreviate almost everywhere with a.e. Similarly, L1(X) denotes the space of all mea-

surable functions f : Rn
! R defined a.e. with respect to Lebesgue measure ⌫ on a

measurable set X ⇢ Rn, which are essentially bounded on X, i.e. |f(x)| is bounded a.e.

on X. We denote f 2 L1(X) with the norm

kfk1 = inf{� | ⌫{x : |f(x)| � �} = 0} = ess sup
x2X

|f(x)|.

L1
loc
(Rn) denotes the space of locally essentially bounded functions. A function f defined

a.e. with respect to Lebesgue measure on Rn is said to be locally essentially bounded on

Rn, denoted as f 2 L1
loc
(Rn), if for every compact set K ⇢ Rn, f 2 L1(K). C(X), C(K)

denote the space of continuous functions defined on the space X or the compact set K

respectively. Ck(X) denotes the space of continuous functions which have continuous

partial derivatives up to order k. C1(X) denotes the space of smooth functions, that is,

continuous functions which have continuous partial derivatives of all orders. Let Ck

0 (X)

and C1
0 (X) denote the subsets of Ck(X) and C1(X) containing functions with compact

support.

Contents

1 Introduction 1

2 Basic Learning Theory and Algorithmic Stability 3

2.1 Statistical framework . 3

2.2 Error decomposition . 4

2.3 Algorithmic stability . 6

3 On Neural Networks 11

3.1 Approximation Theory . 11

3.1.1 Density in C(X) . 11

3.1.2 Density in C(K) with discontinuous activation functions 13

3.2 Exponential Benefits of Depth in Neural Networks 17

4 Neural Ordinary Di↵erential Equations 24

4.1 From Deep Residual Networks to Neural Ordinary Di↵erential Equations . 24

4.2 Function Approximation by Dynamical Systems 27

4.3 Optimal Control Theory . 29

4.3.1 Admissible Controls . 30

4.3.2 Statement of the Control Problem 32

4.3.3 Pontryagin’s Minimum Principle . 34

4.3.4 Pontryagin’s Minimum Principle: Change of Variable 37

4.4 Neural Ordinary Di↵erential Equations: Continuous Backpropagation . . . 49

4.4.1 Gradients with respect to ✓ and t 52

4.5 Approximation limitations of Neural Ordinary Di↵erential Equations . . . 54

5 Stability of Neural Ordinary Di↵erential Equations 57

5.1 Adversarial Examples . 57

5.1.1 Adversarial Perturbations . 58

5.1.2 Fast Gradient Sign Method . 59

5.1.3 Projected Gradient Descent . 60

5.1.4 DeepFool . 60

5.1.5 Adversarial Deformations . 62

5.2 On Robustness of Neural Ordinary Di↵erential Equations 64

5.3 Adversarial Deformations for Neural Ordinary Di↵erential Equations . . . 66

5.3.1 Experimental settings . 67

5.3.2 ADef success for ODE-Net . 68

6 Conclusion 70

A Appendices 71

A.1 Probability Theory Basics . 71

A.2 C1
0 ([a, b]) . 71

A.3 Gronwall’s Lemma . 71

1

1 Introduction

Supervised learning using deep neural networks has tremendously facilitated the progress

of modern machine learning applications [GBC16]. Despite the practical success of deep

neural networks, we still lack a theoretical framework for understanding them. Moreover,

neural network architectures for object classification have been shown to be unstable to

the so-called adversarial attacks, achieved by small perturbations of the correctly clas-

sified image, imperceptible for the human eye [Sze+13]. A vast number of algorithms

have been proposed over the years to e�ciently compute perturbations that fool neural

networks. Figure (1) shows such an adversarial example.

We start by exploiting the algorithmic stability in a general setting in chapter (2), as we

look for functions with good stability properties. The motivation for such an analysis has

always been to design algorithms that will not be a↵ected by noise corrupting the inputs.

The theory presented on this chapter serves as a basement for setting up the framework

for supervised learning and algorithmic stability.

Chapter (3) is devoted to the approximation theory of shallow neural networks and rep-

resentation benefits of deep neural networks. First, we discuss fundamental results on

density of the single hidden layer perceptron model as we show universality of all non-

polynomial activation functions. Then we introduce more hidden layers to the neural

network and examine recent results which prove that deep neural networks are exponen-

tially more e�cient than the shallow ones, in terms of the number of parameters used.

Theoretical e�ciency and practical success of deep neural networks point to the need

for e�cient training in applications. The most commonly applied training technique is

stochastic gradient descent [Bot10], where incremental updates to the trainable param-

eters are performed using gradient information computed via backpropagation [Kel60].

While e�cient to implement, the incremental updates to the parameter tend to be slow,

especially in the initial stages of the training. Moreover, other than the computation of

gradients through backpropagation, the specific structure of deep neural networks is not

utilized. In response to such concerns, in chapter (4) we discuss an alternative train-

ing approach by exploring the optimal control viewpoint of deep learning, introduced by

E [Wei17]. Interpreting residual networks [He+16a] as discretized ordinary di↵erential

equations, we consider the first context in which deep neural networks were replaced by

2 1 INTRODUCTION

Figure 1: An adversarial example for a pre-trained Inception-v3 model [Sze+16] produced

by ADef [AAG18]. The left image, taken from the ILSVRC2012 validation set [Rus+15],

is correctly classified as ”giant panda” while the image on the right, a slightly perturbed

version of the original image, is classified as ”space shuttle”.

continuous dynamical systems. The focus will be on ideas derived from the optimality

conditions of the powerful Pontryagin’s Maximum Principle [Pon+62] to find e�cient

training schemes. We discuss the structure and general properties of control problems

with respect to several performance criteria, which provide a bu↵er between the theo-

retical material of optimal control and the design problems in deep learning. Then, we

examine the recent approach of Neural Ordinary Di↵erential Equations (Neural ODEs)

of Chen et al. [Che+18] for training deep learning models.

The new emerging field of continuous-depth models of constant memory cost, however, is

vulnerable to adversarial attacks. In this context, chapter (5) is a discussion on stability of

Neural ODEs. First, we highlight the inconsistency of neural networks theoretically while

discussing the phenomenon of adversarial attacks for object classification problems and

then we review the robustness of Neural ODEs with respect to several adversarial attacks.

Finally, we experiment with adversarial deformations, achieved by small deformations to

the image found through a gradient descent step. We apply such attacks to Neural ODEs

on MNIST and compare our results to convolutional neural networks.

3

2 Basic Learning Theory and Algorithmic Stability

In this chapter we discuss classical results in learning theory and algorithmic stability. We

begin by setting up the framework for supervised learning in section (2.1), which seeks to

find a function based on some given data, and then in section (2.2) we derive three key

errors involved in such a task. Concretely, the chapter examines the di↵erence between

the error of this function to the true underlying distribution of data and the empirical

error when finding the function from the given inputs. In section (2.3) we provide a bound

on this di↵erence based on the uniform stability property of the function we want to find.

Finally, we study the Tikhonov regularization scheme as a means to guarantee uniform

stability.

2.1 Statistical framework

Let’s start by giving some theoretical background relevant to the analysis of algorithmic

stability [Wol18], [SB14], [MRT12]. First, we define a learning algorithm, whose input is

a finite sequence of pairs S in X ⇥ Y , for X the domain set and Y the label set.

Output of the learning algorithm is a hypothesis h : X ! Y , h 2 Y
X , assumed to be

a Borel function, that aims to predict y 2 Y for arbitrary x 2 X . Hence, a learning

algorithm can be seen as a map A :
S

n2N(X ⇥Y)n ! Y
X , whose range is denoted by F .1

Data instances are assumed to be identically and independently distributed according to

some probability measure P over X ⇥ Y , and the corresponding �-algebra is assumed to

be a product of Borel �-algebras with respect to the usual topologies.

Goal of the learning algorithm is to find a good hypothesis h with respect to a suitably

chosen loss function L : Y ⇥Y ! R. Common loss function choices include the quadratic

loss L(y, h(x)) = |y � h(x)|2 (for continuous Y), or the 0-1 loss L(y, h(x)) = 1y 6=h(x) (for

discrete Y). The smaller the average loss, called risk and given by

R(h) :=

Z

X⇥Y
L(y, h(x))dP (x, y),

the better the hypothesis. But, the problem is that we actually do not know P .

1Starting from chapter (3) and onwards we will restrict our study to function classes F represented

by neural networks.

4 2 BASIC LEARNING THEORY AND ALGORITHMIC STABILITY

2.2 Error decomposition

In order to cope with the problem of section (2.1), there are two helping schemes. First,

the prior knowledge, for instance hidden in the choice of F and the way the learning

algorithm chooses a hypothesis from this class. Second, we know the performance of the

hypothesis on the training data, i.e. we have the empirical risk

R̂(h) :=
1

n

nX

i=1

L(yi, h(xi)). (2.1)

The approach of minimizing R̂ is called empirical risk minimization (ERM). 2

Empirical risk immediately helps us to find bounds for the risk of a hypothesis h, R(h).

Such bounds include the Clopper-Pearson bound [Wol18, Theorem 1.3], which states that

with a high probability (of at least 1� �, for a fixed confidence parameter � 2 (0, 1]) over

an i.i.d. draw of a test set (i.e. the set of labeled data points not used for training), the

risk of the hypothesis R(h) is bounded by the empirical risk evaluated on the test set plus

a constant that depends on �, and the number of test samples.

For a given a distribution P over X ⇥ Y , the Bayes risk is defined as the infimum of

the error achieved over all measurable functions h : X ! Y , i.e. R⇤ = infh R(h). Now,

let RF := infh2F R(h) quantify the optimal performance of a learning algorithm with

range F . Assume further that a hypothesis ĥ 2 F minimizes the empirical risk, i.e.

R̂(ĥ) R̂(h), 8h 2 F .

We want a small di↵erence between the risk of a hypothesis h and the optimal Bayes risk,

which can be decomposed as

R(h)�R⇤ = (R(h)�R(ĥ))| {z }
optimization error

+ (R(ĥ)�RF)| {z }
estimation error

+ (RF �R⇤)| {z }
approximation error

.

In subsequent chapters we will make frequent use of these three (error) concepts, which are

the key to any good machine learning algorithm. Mathematical fields included in studying

such errors include optimization theory, statistics/stochastics and approximation theory.

2If |Y| < 1, then there always exists a minimizer ĥ 2 F that attains infh2F R̂(h) = R̂(ĥ) since the

functions are only evaluated at a finite number of points, which restricts F to a finite space.

2.2 Error decomposition 5

In this chapter, we consider the estimation error, which can be bounded by

R(ĥ)�RF = R(ĥ)� R̂(ĥ) + R̂(ĥ)�R(hF) (2.2)

 R(ĥ)� R̂(ĥ) + R̂(hF)�R(hF)

 2 sup
h2F

���R̂(h)�R(h)
��� .

We used RF = R(hF) in equation (2.2), for some hF in the function class F . Bounds

on di↵erence between the risk and empirical risk are called generalization bounds. They

quantify how well the hypothesis generalizes from the observed data to unseen cases.

Taking into account that we are considering random training data, we should account for

the possibility of an unfair sample of the underlying distribution. Hence, generalization

bounds have to be probabilistic. We can reasonably hope that we obtain guarantees of

the form

PS

h���R̂(h)�R(h)
��� � ✏

i
 �. (2.3)

Bounds of the form (2.3) are the center of the Probably Approximately Correct (PAC)

learning framework.

Many of the PAC learning bounds then rely on the Hoe↵ding’s inequality (see appendix

(A.1)). Generalization bounds deriving from Hoe↵ding’s inequality and union bound for

finite function classes F include [Cas18, pp. 70-71], which states that, with a high prob-

ability (greater than 1 � �), the true risk for all f 2 F is bounded by the empirical risk

of f plus a constant that depends on � > 0, the number of training samples n, and the

size of the class F .

Other generalization bounds are based on di↵erent measures of complexity of the function

class F , including the growth function (finite label set) and the VC-dimension (binary

label set) [Vap98], or covering numbers [Alo+97] to fix the cardinality problem of finite

label sets. These bounds of di↵erent nature and applied in di↵erent situations have in

common the fact that they hold uniformly for all the hypotheses in some fixed function

class F , i.e. PS

h
sup

h2F | R̂(h)�R(h) |� ✏
i
 �. But, we may not have a way to describe

this function class and assess its size.

In the next section, we will take into account the process by which a learning algorithm

chooses a hypothesis and we will see generalization bounds that apply to specific hypothe-

ses with good stability properties. Shalev-Shwartz et al. [Sha+10] define a hypothesis

6 2 BASIC LEARNING THEORY AND ALGORITHMIC STABILITY

to be learnable if it admits a consistent learning algorithm. They continue by defin-

ing on-average-replace-one-example algorithmic stability, which they prove to be the key

necessary and su�cient condition for learnability.

2.3 Algorithmic stability

A learning algorithm is said to be stable if slight perturbations in the training data result

in small changes of the hypotheses at the output of the algorithm and these changes vanish

as the data set grows bigger and bigger [BS13]. A small change in the input typically

means the change or omission of a single data point in the training data set. The most

common way to quantify changes in the hypothesis is by means of the loss function. Let

us recall the definition of uniform stability:

Definition 2.1 (Uniform Stability). [BE01, p. 3]

Consider a loss function L : Y ⇥ Y ! R. A learning algorithm that maps S 2 (X ⇥ Y)n

to a hypothesis hS is said to be uniformly stable with rate ✏ : N ! R if for all n 2 N, i 2
[n], (x, y) 2 X ⇥ Y the following inequality holds for all S, S

0
2 (X ⇥ Y)n that di↵er in

only one element

|L(y, hS(x))� L(y, h
S
0 (x))| ✏(n). (2.4)

The next theorem gives a PAC-type generalization bound based on uniform stability rate.

Theorem 2.2 (PAC bound from stability). [BE01, Theorem 2]

Consider a loss function with range in [�c, c] and any learning algorithm S 7! hS that is

uniformly stable with rate ✏1 : N ! R. Then the following holds with respect to repeated

sampling of training data sets of size n. For all ✏ > 0 and all probability measures over

X ⇥ Y

PS

h
| R̂(hS)�R(hS) |� ✏+ ✏1(n)

i
 2exp

�

n✏2

2(n✏1(n) + c)2

�
.

Proof. Consider '(S) := R̂(hS)�R(hS) as a function of n i.i.d. random variables. In order

to apply McDiarmid’s inequality (see appendix (A.1)), we have to bound the expectation

of '(Z). We begin with a useful lemma.

Lemma 2.3. [BE01, Lemma 1]

For any learning algorithm A : S 7! hS and any probability measure P on (X ⇥ Y)

ES

h
R(hS)� R̂(hS)

i
= ESE(x,y)Ei [L(yi, hSi(xi))� L(yi, hS(xi))] (2.5)

where S = ((xi, yi))ni=1, S
i is obtained from S by replacing the i’th element (xi, yi) with

(x, y) and Ei denotes the expectation with respect to a uniform distribution i 2 [n].

2.3 Algorithmic stability 7

Proof. Note that

E [R(hS)] = ESE(x,y) [L(y, hS(x))] = ESE(x,y) [L(yi, hSi(xi))]

by the fact that risk function is the average loss and the i.i.d. assumption on (xi, yi) and

(x, y). Since this holds for all i we may, in addition, take the expectation value Ei on the

right hand side. At the same time, we have

ES

h
R̂(hS)

i
= ESEi [L(yi, hS(xi))] = ESE(x,y)Ei [L(yi, hS(xi))]

so that by subtracting the two identities we get equation (2.5).

Now, using the fact that uniform stability (2.4) implies the so-called on-average stability

(as given below) with the same rate, i.e.

| ES⇠PnE(x,y)⇠PEi [L(yi, hSi(xi))� L(yi, hS(xi))] | ✏1(n)

we have from equation (2.5) that | E ['(S)] | ✏1(n). We observe that | '(S) |� ✏+ |

E ['(S)] |, which implies | '(S)� E ['(S)] |� ✏. Hence

PS

h
| R̂(hS)�R(hS) |� ✏+ ✏1(n)

i
 PS [| '(S)� E ['(S)] |� ✏]

 2exp

�

2✏2

n⌫2

�

where the second step is McDiarmid’s inequality with ⌫ an upper bound on | '(S)�'(Si) |

that is yet to be determined. This can be done by again applying the assumed stability

to the inequality

| '(S)� '(Si) | | R̂(hS)� R̂(hSi) | + | R(hS)�R(hSi) |

1

n

X

j 6=i

| L(yj, hS(xj))� L(yj, hSi(xj)) | +
2c

n
+ | R(hS)�R(hSi) | .

We can bound the sum of the r.h.s by ✏1(n) and, similarly,

| R(hS)�R(hSi) |=| E(X,Y) [L(Y, hS(X))� L(Y, hSi(X))] | ✏1(n).

The claim then follows with ⌫ := 2(✏1(n) + c/n).

In the remaining part, let’s analyze the use of regularization as a means to guarantee

uniform stability, where a single hypothesis class F is chosen together with a regularizer,

i.e. a complexity penalizing function % : F ! R+, and one minimizes the regularized

empirical risk R̂(h) + %(h). If F is embedded in a normed space, a common scheme is

8 2 BASIC LEARNING THEORY AND ALGORITHMIC STABILITY

Tikhonov regularization, where %(h) := kAhk2 for some linear map A, which is often sim-

ply a multiple of the identity. The remaining free parameter is then chosen for instance

by cross-validation [Koh+95].

A learning algorithm S 7! hS is said to su↵er from overfitting if the di↵erence between

the true risk of its output R(hS), and the empirical risk of its output R̂(hS), is large.

Lemma (2.3) tells us that a learning algorithm does not overfit i↵ it is on-average stable.

Of course, a learning algorithm that does not overfit is not necessarily a good learning

algorithm - take, for example, an algorithm A that always outputs the same hypothesis.

A useful algorithm should find a hypothesis that on one hand fits the training set (i.e.

has a low empirical risk) and on the other hand does not overfit. Hence, the algorithm

should both fit the training set and at the same time be stable. The parameter � of the

Tikhonov functional in theorem (2.6) achieves this balance.

To continue, we need the following notion from convex optimization:

Definition 2.4 (Strong convexity). Let F be a convex subset of a real inner product space

and ↵ > 0 a real number. A function � : F ! R is called ↵-strongly convex, if for all

g, h 2 F and ↵ 2 [0, 1] we have

��(h) + (1� �)�(g) � �(�h+ (1� �)g) +
↵

2
�(1� �)kh� gk22.

In order to prove uniform stability from regularization, we need the following lemma:

Lemma 2.5. [SB14, Lemma 13.5]

If � : F ! R is ↵-strongly convex and g is a minimizer of �, then, for any h 2 F

�(h) � �(g) +
↵

2
kh� gk22.

Proof. We start by dividing the definition of strong convexity by � and rearrange terms

to get that

�(g + �(h� g))� �(g)

�
 �(h)� �(g)�

↵

2
(1� �)kh� gk22.

Taking the limit � ! 0 we obtain that the right hand side converges to �(h) � �(g) �
↵

2 kh � gk22. Conversely, the left-hand side becomes the derivative of the function '(�) =

�(g+ �(h� g)) at � = 0. Since g is a minimizer of �, it follows that � = 0 is a minimizer

of ', and therefore the left-hand side of the preceding goes to zero in the limit ↵ ! 0.

2.3 Algorithmic stability 9

Theorem 2.6 (Uniform stability from regularization). [Wol18, Theorem 1.23]

Let � > 0 and F ✓ Y
X be a convex subset of an inner product space. If for all (x, y) 2

X⇥Y the map h 7! L(y, h(x)) is convex and l–Lipschitz on F , then the learning algorithm

that minimizes Tikhonov functional fS(h) := R̂(h) + �hh, hi is uniformly stable with rate
2l2

�n
.

Proof. As fS is 2�-strongly convex (as a sum of an average convex loss and a parabola

with parameter � [SB14, Lemma 13.5]), and h minimizes fS, we can exploit lemma (2.5)

to obtain

�kh
0
� hk22 fS(h

0
)� fS(h). (2.6)

On the other hand, with h := hS, h
0
:= hSi and the norm being the one induced by the

inner product we can write

fS(h
0
)� fS(h) = R̂S(h

0
)� R̂S(h) + �(kh

0
k
2
2 � khk22)

= R̂Si(h
0
)� R̂Si(h) + �(kh

0
k
2
2 � khk22)

+
1

n

h
L(yi, h

0
(xi))� L(yi, h(xi)) + L(y, h(x))� L(y, h

0
(x))

i
. (2.7)

Using the fact that h
0
minimizes fSi , in equation (2.7), we obtain that

fS(h
0
)� fS(h)

1

n

h
L(yi, h

0
(xi))� L(yi, h(xi)) + L(y, h(x))� L(y, h

0
(x))

i
. (2.8)

Combining relations (2.8) and (2.6) we obtain that

�kh
0
� hk2

1

n

h
L(yi, h

0
(xi))� L(yi, h(xi)) + L(y, h(x))� L(y, h

0
(x))

i
. (2.9)

Since the loss function, L(y, h(x)), is l-Lipschitz, then by definition of Lipschitzness

L(yi, h
0
(xi))� L(yi, h(xi)) lkhSi � hSk2.

Similarly,

L(y, h(x))� L(y, h
0
(x)) lkhSi � hSk2. (2.10)

Plugging these inequalities into (2.9) leads to kh
0
�hk2 2l/(�n). Plugging the preceding

back into equation (2.10) we conclude that

| L(y, h(x))� L(y, h
0
(x)) | lkh� h

0
k2

2l2

�n
.

10 2 BASIC LEARNING THEORY AND ALGORITHMIC STABILITY

Let’s now rewrite the expected risk of a learning algorithm S 7! hS as

ES [R(hS)] = ES

h
R̂(hS)

i
+ ES

h
R(hS)� R̂(hS)

i
(2.11)

The first term reflects how well hS fits the training set while the second term reflects the

di↵erence between the true and empirical risks of hS. As it was shown in lemma (2.3), the

second term is equivalent to the stability of the learning algorithm A. Since our goal is

to minimize the risk of the algorithm, we need that the sum of both terms will be small.

From lemma (2.3) and theorem (2.6) we have that

ES⇠Pn

h
R(hS)� R̂(hS)

i

2l2

�n
(2.12)

which shows that the second term in the equation (2.11) decreases as the regularization

parameter � increases. At the same time, the empirical risk increases with �. We therefore

face a trade-o↵ between fitting and overfitting. The following corollary aims at formalizing

this trade-o↵:

Corollary 2.7 (Regularization trade-o↵). [Wol18, Corollary 1.29]

Let � and F ✓ Y
X be a convex subset of an inner product space. Assume that for

all (x, y) 2 X ⇥ Y the map h 7! L(y, h(x)) is convex and l-Lipschitz on F and define

h⇤ := argminh2F R(h). Then the learning algorithm S 7! hS that minimizes the functional

fS(h) := R̂(h) + �khk22 satisfies

ES [R(hS)] R(h⇤) + �kh⇤
k
2
2 +

2l2

�n
. (2.13)

Proof. Since hS minimizes fS, we have

ES

h
R̂(hS)

i
 ES [fS(hS)] ES [fS(h

⇤)] = R(h⇤) + �kh⇤
k
2
2.

Substituting this bound and the bound (2.12) in equation (2.11) leads to the claimed

result

ES

h
R̂(hS)

i
 R(h⇤) + �kh⇤

k
2
2 +

2l2

�n
.

The optimal value for � that minimizes the right hand side of equation (2.13) is then

�opt =
l

kh⇤k2

r
2

n
=) ES [R(hS)] R(h⇤) + 2lkh⇤

k2

r
2

n
.

This tells us that, in expectation, the risk converges asymptotically to the optimum. How-

ever, in practice, the norm kh⇤
k2 is not known, but one can try to estimate it, for example

with the help of a validation set (the set which is used to give an estimate of the learning

algorithm while tuning its free parameters), and then use the estimate instead.

11

3 On Neural Networks

Supervised learning (2) using deep neural networks has tremendously facilitated the

progress of modern machine learning applications [GBC16]. Starting from this chap-

ter we focus on function classes F represented by neural networks as we examine the

approximation theory of neural networks and representation benefits of deep neural net-

works. Concretely, in section (3.1) we discuss classical and fundamental results on the

density of the single hidden layer perceptron model, then in section (3.2) we introduce

more hidden layers to the neural network and examine recent results which prove that

deep neural networks are exponentially more e�cient than the shallow ones in terms of

the number of parameters used.

3.1 Approximation Theory

In this section on approximation theory of the single hidden layer perceptron model we

provide a comprehensive proof on universality of all non-polynomial activation functions.

This result embeds, as special cases, almost all the previous results that were reported

on density literature. However, we note that density does not imply an e�cient scheme

for approximation. Moreover, there is a lower bound on the degree to which one can

approximate using single hidden layer neural networks, which is independent of the acti-

vation function. Nevertheless, density is a natural starting point for the analysis of neural

networks and a lack of density precludes any approximation scheme from being in the

least useful.

3.1.1 Density in C(X)

Let’s start by considering density questions associated with the set of single hidden layer

neural networks, or the so-called single hidden layer perceptron model. Concretely, we

consider the set

X

n

= span{�(w · x+ #) : w 2 Rn,# 2 R} (3.1)

with univariate activation function � : R ! R, vector of weights w 2 Rn and threshold

value # 2 R. The central focus of this section is to find for which � it is true that, for any

f 2 C(Rn), any compact subset K of Rn, and any ✏ > 0, there exists a g 2
P

n
such that

sup
x2K

|f(x)� g(x)| < ✏.

12 3 ON NEURAL NETWORKS

In other words, we want to know for which � we have the density of the linear space
P

n

in the space of continuous functions C(Rn), with respect to the uniform norm kfk
K,1 =

sup
x2K |f(x)| for f 2 C(K) for any compact set K of Rn.

Density is a first step before finding e�cient schemes for approximation. A lack of density

means that it is impossible to approximate a large class of functions, and this excludes

any scheme based thereon from being in the least useful. That’s why we settle for density

as opposed to exact representations in this section. However, from a practical perspective

it should be noted that the density of
P

n
in C(Rn) does not guarantee that one can

approximate well to every function f 2 C(Rn) from
(

rX

i=1

ci�(wi · x+ #i) : ci,#i 2 R,wi 2 Rn

)
, (3.2)

i.e. the set of single hidden layer neural networks restricted to have not more than r units

in the hidden layer, for some fixed r. Moreover, Maiorov et al. [MP99] give a lower bound

(for any reasonable set of functions) on the degree to which one can approximate using

the set (3.2), independent of the choice of �.

A variety of techniques using slightly di↵erent assumptions on the activation function were

used to prove density results of the single hidden neural networks in the space of continu-

ous functions. Cybenko [Cyb89] proves density in the space of continuous functions with

support in the unit hypercube, i.e. C([0, 1]n), for any continuous sigmoidal activation

function. The term sigmoidal is used for the class of activation functions � : R ! R
satisfying limt!�1 �(t) = 0 and limt!1 �(t) = 1 [Cyb89, p. 306]. The main building

blocks in his proof are the Hahn-Banach Theorem, the Riesz Representation Theorem

and the Lebesgue Bounded Convergence Theorem. Funahashi [Fun89] proves density in

C(K), for any non-constant, bounded and monotonously increasing continuous activation

function �. Similar results were proved by Hornik et al. [HSW+89], who show the density

for monotonic sigmoidal activation functions and potentially discontinuous at countably

many points. They obtain density by first applying the Stone-Weierstrass Theorem to the

sums and products of activation functions. Then they prove the desired result by using

the fact that the products of cosine functions can be approximated arbitrarily well on a

bounded set by linear combinations of cosine functions [GW88].

However, most of the above mentioned results on proving that the set of single hidden

neural networks can approximate any continuous function to any degree of accuracy as-

3.1 Approximation Theory 13

sume some degree of continuity on the activation function �. Leshno et al. [Les+93] prove

that we can actually drop the continuous assumption and impose minimal conditions on

the activation function. Namely, only non-polynomiality of � is required. This also em-

beds, as special cases, almost all the activation functions that were reported on density

literature prior to this result. Note that the density results for discontinuous activation

functions is more of theoretical interest, as the commonly used activation functions in

practice (for instance sigmoid function, ReLU) are continuous.

3.1.2 Density in C(K) with discontinuous activation functions

For the following theorem on proving the density in C(K) for possibly discontinuous

activation functions �, denote by L1
loc
(R) the locally essentially bounded functions on R.

Leshno et al. [Les+93] then consider the set of functions M which are in L1
loc
(R) and

have the property that the closure of the set of points of discontinuity is of zero Lebesgue

measure.

Theorem 3.1 (Universality of all non-polynomial activation functions). [Les+93, Theo-

rem 1]

Let � 2 M . Then
P

n
is dense in C(Rn) i↵ � is not a polynomial (a.e.).

As a simple consequence of this theorem and by [VK61], we can restrict the weights w

to lie in some W ✓ Rn. W must have the property that no non-trivial homogeneous

polynomial vanishes on W .

Proof. It is immediate that density cannot hold if � is a polynomial, as
P

n
would consist

of polynomials of a fixed degree which are not dense in C(Rn).

For the converse result, we need to combine some more engaged steps presented in the

form of following lemmas.

The first lemma enables us to reduce our analysis from Rn to the more tractable univariate

R.

Lemma 3.2 (Dimensionality reduction). [Les+93, p. 4, Step 2]

If
P

1 is dense in C(R), then
P

n
is dense in C(Rn).

Proof. By [VK61] the space of the so-called ridge functions given by

span{g(w · x)|w 2 Rn, g 2 C(R)} (3.3)

is dense in C(Rn). Now, let f 2 C(K) for some compact set K ⇢ Rn. Since the space

14 3 ON NEURAL NETWORKS

(3.3) is dense in C(K), given ✏ > 0 there exist gi 2 C(R) and wi 2 Rn, i 2 [r], such that
�����f(x)�

rX

i=1

gi(wi · x)

����� <
✏

2

for all x 2 K. Since K is compact, {wi · x : x 2 K} ✓ [↵i, �i] for some finite interval

[↵i, �i], i 2 [r]. Because
P

1 is dense in C([↵i, �i]), i 2 [r], there exist constants cij, wij,#ij 2

R, j 2 [mi], i 2 [r], such that
�����gi(y)�

miX

j=1

cij�(wijy + #ij)

����� <
✏

2r

for all y 2 [↵i, �i]. Thus
�����f(x)�

rX

i=1

miX

j=1

cij�(wij(wi · x) + #ij)

����� <

�����f(x)�
rX

i=1

gi(wi · x)

�����

+
rX

i=1

�����gi(y)�
miX

j=1

cij�(wijy + #ij)

�����
< ✏

for all x 2 K.

Using the homogeneity of the directions of weights w and by [VK61], Pinkus [Pin99, p.

155] proves that we can restrict w to lie in µ⇥W for some µ 2 R and W ✓ S
n�1, where W

has the property that no non-trivial homogeneous polynomial vanishes on W . The next

proposition then proves density for the restricted class of smooth activation functions.

Proposition 3.3 (Density for smooth �). [Les+93, p.4, Step 3]

If � 2 C1 is not a polynomial, then
P

1 is dense in C(R).

Proof. Since � 2 C1, and [�((w+ h)x+ #)� �(wx+ #)]/h 2
P

1 for every w,# 2 R and

h 6= 0, it follows that (d/dw)�(wx+ #) is contained in the closure of
P

1,
P

1. Similarly,

(dk/dwk)�(wx + #) 2
P

1 for all k 2 N and all w,# 2 R. But (dk/dwk)�(wx + #) =

xk�(k)(wx+#), where �(k) denotes the kth derivative of �. Now, since � is not a polynomial

there exists a #k such that �(k)(#k) 6= 0 (this is a non-trivial consequence of Baire’s

Category Theorem, cf. [BB96]). Hence
P

1 contains all monomials

xk�(k)(#k) =
@k

@wk
�(wx+ #)

����
w=0,#=#k

,

and thus all polynomials. By the Weierstrass Approximation Theorem it follows that
P

1

is dense in C(R).

3.1 Approximation Theory 15

In a more general form, Proposition 3.3 can be restated by requiring w to lie in a set

containing a sequence of values tending to zero and # to lie on an open interval on which

� is not a polynomial [Pin99, Corollary 3.5].

The following lemma gives a very important step on generalizing from � 2 C1 to � 2 M ,

where M contains locally essentially bounded activation functions that have the property

that the closure of the set of points of discontinuity is of zero Lebesgue measure (that is,

are Riemann-integrable).

Lemma 3.4 (Dropping the smoothness assumption on �). [Les+93, p.4, Step 4]

For each � 2 M not a polynomial and ' 2 C1
0 (C1 with compact support), the convolution

� ⇤ ' 2
P

1.

The proof continues in a constructive manner by showing that we can approximate the

convolution

(� ⇤ ')(x) =

Z
�(x� y)'(y)dy

uniformly by
mX

i=1

�(x� yi)'(yi)�yi

on any compact set [�↵,↵], such that supp' ✓ [�↵,↵], where yi = �↵ + 2i↵/m and

�yi = 2↵/m for i 2 [m] [Les+93, p.4, Step 4].

From lemma (3.4) it follows that � ⇤ ' 2
P

1. Thus,

(� ⇤ ')(wx+ #) =

Z
�(wx+ #� y)'(y)dy

is also in
P

1, for each w,# 2 R. Now, for � 2 M not a polynomial and any ' 2 C1
0 , we

have that � ⇤ ' 2 C1 [AF03]. Hence, from proposition (3.3), if � ⇤ ' is not a polynomial

then
P

1 is dense in C(R).
The remaining part of the proof is done by contradiction, that is, by assuming that � ⇤'

is a polynomial for all ' 2 C1
0 and concluding from this fact that � is itself a polynomial

(a.e.).

Lemma 3.5. [Les+93, pp. 5-6, Steps 6, 7]

For each � 2 M not a polynomial and ' 2 C1
0 assume that the convolution � ⇤ ' is a

polynomial, then there exists an m 2 N such that � ⇤ ' is a polynomial of degree at most

m for all ' 2 C1
0 . As a consequence, � is also a polynomial of degree at most m (a.e.).

16 3 ON NEURAL NETWORKS

The proof starts by considering the set of all C1
0 functions with support in [a, b] and the

fact that C1
0 ([a, b]) is a complete metric vector space - Fréchet space (see appendix (A.2)).

By applying Baire’s Category Theorem and noting that {' 2 C1
0 ([a, b])| degree(� ⇤ ')

k} for k 2 N is a vector space, there exists an m 2 N such that

C1
0 ([a, b]) = {' 2 C1

0 ([a, b])| degree(� ⇤ ') m} .

For the general case of ' 2 C1
0 (R), the proof that degree(� ⇤ ') m follows by simply

noting that the number m does not depend on the interval [a, b], but it depends at most

on the length of the interval.

To prove the second part of the lemma, we use the fact that there exists a sequence

('n)n2N 2 C1
0 (R) such that the convolution � ⇤ 'n converges to � in Lp for 1 p < 1.

For 'n we can take, for example, mollifiers [AF03]. Thus, if � ⇤ 'n is a polynomial of

degree at most m so is � (a.e.). This contradicts our assumption.

Remark 3.6. [Les+93, Remark 4]

If we were to consider continuous activation functions, � 2 C(R), we could complete

the proof of theorem (3.1) immediately after proposition (3.3) by applying the theory of

mean-periodic functions [Sch47]. A consequence is that if � 2 C(R) is not a polynomial

then the closure of span{�(x+#) : # 2 R} contains a function of the form e�x cos(⌫x) for

some �, ⌫ 2 R\{0}. The proof then follows by noting that any such function is in C1.

Similarly to the proof of lemma (3.5), Pinkus [Pin99, Proposition 3.8] extends the result

on density in C(Rn) for discontinuous activation functions. Namely, he proves that den-

sity holds for any � that is bounded and Riemann-integrable on every finite interval.

Until now, we have seen density in C(Rn). But, if µ is any non-negative finite Borel

measure, with support in some compact set K, then C(K) is dense in the space of pth

power integrable functions Lp(µ) defined on the compact set K for any 1 p < 1.

Hence, we can extend these results to these spaces as well.

Theorem 3.7 (Density in Lp(µ)). [Les+93, Proposition 1]

Assume µ is a non-negative finite measure on Rn with compact support which is absolutely

continuous with respect to the Lebesgue measure. Then
P

n
is dense in Lp(µ), 1 p < 1,

i↵ � is not a polynomial (a.e.).

Proof. Clearly, if � is a polynomial, then
P

n
is contained in the set of polynomials of

bounded degree. Hence, density in Lp(µ) for 1 p < 1 cannot possibly hold.

3.2 Exponential Benefits of Depth in Neural Networks 17

For the converse result, we let K denote the support of µ. By [AF03], C(K) is dense in

Lp(µ). Thus, given f 2 Lp(µ) and ✏ > 0 there exists a g 2 C(K) such that

kf � gk
p
 ✏/2.

Now, since
P

n
is dense in C(K) in the uniform norm, for this given g 2 C(K) there

exists an h 2
P

n
, such that

kg � hk1
✏

2c

where c = µ1/p(K). Thus kg � hk
p
 ✏/2, and

kf � hk
p
 kf � gk

p
+ kg � hk

p
 ✏.

3.2 Exponential Benefits of Depth in Neural Networks

In this section, we allow for neural networks to have more than one hidden layer as we

consider the so-called deep neural networks. For many years, relatively little was known

and many authors saw little theoretical gain in considering more than one hidden layer.

Viewing deep neural networks as a generalization of shallow neural networks, it is natural

to think that also deep neural networks satisfy the density. Then there arises the question

on why deep neural networks are so widespread and successful in practice.

The first results in this direction can be seen by exploiting the advantages of the two

hidden layer neural networks as opposed to the single hidden layer ones when it comes

to the order of approximation. There is a lower bound on the degree to which the set of

single layer neural networks with r units in the hidden layer can approximate any func-

tion.3 It is given by the extent to which a linear combination of r ridge functions (3.3)

can approximate this function [Mai99]. Thus, it is natural to think on why it would be in

the least useful to consider the set of single hidden layer neural networks. Pinkus et al.

[MP99, Proposition 1], [Pin99, Corollary 6.4] show that the lower bound for this set can

be attained using activation functions that are in C1, sigmoidal and strictly increasing.

While there is a lower bound on the degree of approximation for the single hidden layer

model which depends on the number of units used, this is not the case in the two hidden

3From the results of previous section (3.1), it can be easily derived that the perfect approximation to

any function is achieved if the number of units in the hidden layer tends to infinity [Pin99, p. 167]. This

in turn implies no bound on the width of the network.

18 3 ON NEURAL NETWORKS

layer model. Maiorov et al. [MP99] show that there is no theoretical lower bound on the

error of approximation if we permit two hidden layers, with a � which is analytic (not

only C1), strictly increasing and sigmoidal. We mention a special case of this result.

Theorem 3.8. [Pin99, Theorem 7.1]

There exists an activation function � which is C1, strictly increasing and sigmoidal, and

has the following property. For any f 2 C([0, 1]n) and ✏ > 0, there exist real constants

di, cij,#ij, �i, and vectors wij 2 Rn for which
�����f(x)�

4n+3X

i=1

di�

2n+1X

j=1

cij�(wij · x+ #ij) + �i

!����� < ✏,

for all x 2 [0, 1]n.

The proof makes use of an improved version of the Kolmogorov Superposition Theorem

(3.9). Kolmogorov disproved Hilbert’s 13th conjecture that a solution of the general equa-

tion of degree seven cannot be expressed as a finite superposition of continuous functions

of two variables by showing that every continuous multivariate function can be represented

as a finite superposition of continuous functions of only one variable.

Theorem 3.9 (The Kolmogorov Superposition Theorem). [LGM96]

For every n 2 N there exist strictly increasing functions �i 2 C([0, 1]), i 2 [2n + 1]

and constants �j, j 2 [n],
P

n

j=1 �j 1 such that for every f 2 C([0, 1]n) there exists

g 2 C([0, 1]) so that

f(x1, ..., xn) =
2n+1X

i=1

g

nX

j=1

�j�i(xj)

!
. (3.4)

We note that the theorem (3.9) is about representing and not approximating functions.

From the viewpoint of neural networks, equation (3.4) can be interpreted as a two hidden

layer neural network where the first hidden layer contains n(2n+ 1) units, which use the

�i’s as activation functions, the second hidden layer contains 2n+1 units with activation

function g, and the output unit uses a linear activation function �(x) = x. Hence, equation

(3.4) provides an exact representation using only finitely many units, but at the cost of

having an activation function g that depends on f .

The proof of theorem (3.8), apart from applying theorem (3.9), uses an activation function

� which has the desired properties (it is in C1, strictly increasing and sigmoidal), but is

artificially constructed and is only of theoretical interest, so we abstain from presenting

the proof. Nonetheless, from an approximation-theoretic point of view, this theorem al-

lows us to conjecture that the two hidden layer model may be significantly more promising

3.2 Exponential Benefits of Depth in Neural Networks 19

than the single hidden layer model.

In the remaining part of this section, let’s focus on the reverse approach to the one dis-

cussed in section (3.1). Namely, we will try to identify a countable family of functions for

which a good approximation is possible. Telgarsky [Tel15], [Tel16] in his works identifies

functions which facilitate an exponential order of approximation with shallow neural net-

works, linear order with deep neural networks and constant order with recurrent neural

networks [RHW86]. We note that in no sense this family of functions will satisfy the

density property as in the previous section (3.1).

First, we generalize the concept of a neural network as a function whose evaluation is

defined by a graph in the following way. Root nodes, or units, compute x 7! �(w · x+ #)

with �,w,# defined as before in (3.1). Internal nodes’ input vector is the collective output

of their parents. The choices of # and w may vary from node to node, and the set of

functions obtained by varying these parameters gives the function class of neural networks

F(�;m, l) which has l layers each with at most m units.

We restrict our discussion to classification problems. That is, given a function f : Rn
!

R we define f̃ : Rn
! {0, 1} with f̃ := 1f(x)�1/2. Then, given a sequence of points

((xi, yi))ni=1, define R̂(f) = 1/n
P

n

i=1 1yi 6=f̃(xi)
(2.1). If we focus on functions defined on

the univariate R, we have the following theorem.

Theorem 3.10. [Tel15, Theorem 1.1]

Let positive integer k, number of layers l, and number of units per layer m be given with

m 2(k�3)/l�1. Then there exists a collection of n := 2k points ((xi, yi))ni=1 with xi 2 [0, 1]

and yi 2 {0, 1} such that

i) minf2F(ReLU;2,2k) R̂(f) = 0.

ii) ming2F(ReLU;m,l) R̂(g) � 1/6.

We have denoted by ReLU [NH10] the non-linear activation function given by

ReLU(x) = max(0, x).

This result provides a glimpse on why and when deep neural networks are more e�cient

than the shallow ones in terms of the number of parameters used. If we fix a particular

function, we see that we cannot approximate the function well unless the number of units

per layer is exponential (in k), whereas for a deeper network with the same activation

function, the total number of units required is linear.

20 3 ON NEURAL NETWORKS

Consequently, Telgarsky [Tel15] makes three refinements: the classification problem is

specified to be the one given by the n-ap (3.11), the network in condition i) of theorem

(3.10) will be an even simpler recurrent network, and the ReLU activation function in

condition ii) will be substituted by a general class of piecewise a�ne activation functions

(3.12). These refinements will eventually lead to theorem (3.13).

Definition 3.11 (n-ap). [Tel15, pp. 1-2]

Let n-ap (the n-alternating-point problem) denote the set of n := 2k uniformly spaced

points within [0, 1 � 2�k] with alternating labels, as depicted in figure (2), that is, points

((xi, yi))
2k�1
i=0 with xi = i2�k and yi = 0 when i is even, and otherwise yi = 1.

Figure 2: This figure has been reproduced from [Tel15, Figure 1] and depicts the 23-ap.

Let F(�;m, l; k) denote k iterations of a recurrent network with l layers of at most m

units each, such that every f 2 F(�;m, l; k) consists of some fixed network g 2 F(�;m, l)

applied k times

f(x) = gk(x) = (g � · · · � g| {z }
k times

)(x).

Consequently, F(�;m, l; k) ✓ F(�;m, lk) [Tel15], but the former has O(ml) parameters

whereas the latter has O(mlk) parameters.

Definition 3.12 (t-sawtooth activation function). [Tel15, p. 2]

� : R ! R is t-sawtooth if it is piecewise a�ne with t pieces.

Theorem 3.13. [Tel15, Theorem 1.2]

Let positive integer k, number of layers l, and number of units per layer m be given. Given

a t-sawtooth � : R ! R and n := 2k points as specified by the n-ap, then

i) minf2F(ReLU;2,2;k) R̂(f) = 0.

ii) ming2F(�;m,l) R̂(g) � (n� 4(tm)l)/(3n).

In order to prove theorem (3.13) we need to take the following steps which are instruc-

tive in themselves and are presented as lemmas. Theorem (3.10) will then be a simple

consequence of theorem (3.13).

3.2 Exponential Benefits of Depth in Neural Networks 21

Lemma 3.14. [Tel15, Lemma 2.3]

Let f, g : R ! R be respectively k- and l-sawtooth. Then f + g is (k + l)-sawtooth, and

f � g is kl-sawtooth.

Consider a partition If , respectively Ig, of R corresponding to f , respectively g, on each of

which they are piecewise a�ne with k, respectively l, pieces, and note that adding together

sawtooth functions grows the number of regions very slowly, whereas composition grows

the number of regions very quickly, an early sign of the benefits of depth.

Lemma 3.15. [Tel15, Lemma 2.1]

If � is t-sawtooth, then every f 2 F(�;m, l) with f : R ! R is (tm)l-sawtooth.

Proof. Argue by induction over the layers, that is, prove that the output of each unit in

layer i is (tm)i-sawtooth as a function of the neural network input. For the first layer

this is obvious, since each unit computes x 7! �(wx + #), which by lemma (3.14) is

t-sawtooth, since wx + # is itself a�ne. Consequently, the input to layer i with i > 1

is a collection of functions (g1, ..., gm0) with m0
 m and gj being (tm)i�1-sawtooth by

inductive hypothesis. Then, by applying lemma (3.14) twice, x 7! �(
P

j
wjgj(x) + #) is

(tm)i-sawtooth.

Proposition 3.16. [Tel15, Lemma 2.2]

Let ((xi, yi))ni=1 be given according to the n-ap Then every t-sawtooth function f : R ! R
satisfies R̂(f) � (n� 4t)/(3n).

Proof. Since f is piecewise monotonic with a corresponding partition R having at most

t pieces, then f has at most 2t � 1 crossings of 1/2, that is, at most one within each

interval of the partition, and at most 1 at the right endpoint of all but the last interval.

Thereafter, f̃ is piecewise constant, where the corresponding partition of R is into at most

2t intervals. Thus, n points with alternating labels of n-ap must lie in 2t intervals, hence

the total number of points lying in intervals with at least three points is at least n� 4t.

Since signs must alternate within any such interval, at least a third of the points in any

of these intervals are labeled incorrectly by f̃ .

Proposition (3.16) and lemma (3.15) immediately enable us to deduce condition ii) of

theorem (3.13), which in turn implies condition ii) of theorem (3.10). Indeed, by noting

that ReLU is 2-sawtooth and F(ReLU; 2, 2; k) ✓ F(ReLU; 2, 2k), the condition m

2(k�3)/l�1 implies

n� 4(2m)l

3n
=

1

3
� (2m)l2�k

✓
4

3

◆
�

1

3
� 2k�32�k

✓
4

3

◆
=

1

6
.

22 3 ON NEURAL NETWORKS

For proving condition i) of theorem (3.13), Telgarsky starts by constructing a function

fm : R ! R, depicted in figure (3), and defined as

fm(x) :=

8
>>><

>>>:

2x for 0 x 1/2

2(1� x) for 1/2 < x 1

0 otherwise

and noting that fm 2 F(ReLU; 2, 2) since, for example, fm(x) = ReLU(2ReLU(x) �

4ReLU(x�1/2)). Applying fm(x) to itself leads to f 2
m
and f 3

m
in figure (3). Note that peaks

and troughs match the 22-ap and 23-ap. In a summarized approach, these compositions

may be written as follows.

Figure 3: This figure has been reproduced from [Tel15, Figure 2] and depicts fm, f 2
m
, and

f 3
m
.

Lemma 3.17. [Tel15, Lemma 2.4]

Let real x 2 [0, 1] and positive integer k be given, and choose the unique non-negative

integer ik 2 {0, ..., 2k�1
} and real xk 2 [0, 1) so that x = (ik + xk)21�k. Then

fk

m
(x) =

8
<

:
2xk for 0 xk 1/2

2(1� xk) for 1/2 < xk < 1.

Proof. Argue by induction on the number of compositions l. For l = 1, the result is imme-

diate. For the inductive step, we make use of the mirroring property of pre-composition

3.2 Exponential Benefits of Depth in Neural Networks 23

with fm and the symmetry of f l

m
(inductive step), which imply that for every x 2 [0, 1/2]

(f l

m
� fm)(x) = (f l

m
� fm)(1� x) = (f l

m
� fm)(x+ 1/2).

Thus, it su�ces to consider x 2 [0, 1/2], which by the mirroring property means (f l

m
�

fm)(x) = f l

m
(2x). Now, the unique non-negative integer il+1 and real xl+1 2 [0, 1) satisfy

2x = 2(il+1 + xl+1)2�l�1 = (il+1 + xl+1)2�l. Applying the inductive hypothesis to 2x gives

(f l

m
� fm)(x) = f l

m
(2x) =

8
<

:
2xl+1 for 0 xl+1 1/2

2(1� xl+1) for 1/2 < xl+1 < 1.

Condition i) of theorem (3.13) then follows by noting that fk

m
2 F(ReLU; 2, 2; k) ✓

F(ReLU; 2, 2k) by construction. Moreover, by lemma (3.17) fk

m
(xi) = f̃k

m
(xi) = yi on

every (xi, yi) in the n-ap. This also implies condition i) of theorem (3.10).

The more refined result of theorem (3.13) can say, for example, that on the 2k-ap one

needs exponentially (in k) many parameters with linear combinations of decision trees

[DC96], linearly many parameters with a deep network and constantly many parameters

with a recurrent network [Tel15].

24

4 Neural Ordinary Di↵erential Equations

Motivated by theoretical e�ciency (3) and practical success of deep neural networks, in

this chapter we exploit residual networks and examine e�cient training schemes for prac-

tical applications. The most commonly used training technique is stochastic gradient

descent [Bot10], where incremental updates to the trainable parameters are performed

using gradient information computed via backpropagation [Kel60]. While e�cient to im-

plement, the incremental updates to the parameter tend to be slow, especially in the

initial stages of the training. Moreover, other than the computation of gradients through

backpropagation, the specific structure of deep neural networks is not utilized. In response

to such concerns, in this chapter we discuss an alternative training approach by exploring

the optimal control viewpoint of deep learning, introduced by E [Wei17].

We start by interpreting residual networks [He+16a] as discretized ordinary di↵erential

equations and consider the first context in which deep neural networks were replaced by

continuous dynamical systems. In order to provide e�cient training schemes, we focus on

ideas and algorithms derived from the optimality conditions of the powerful Pontryagin’s

Maximum Principle [Pon+62] and its variants. We discuss the structure and general

properties of control problems with respect to several performance criteria, which provide

a bu↵er between the theoretical material of optimal control and the design problems in

deep learning. Next, as a special case, we examine the recent approach of Neural Ordinary

Di↵erential Equations (Neural ODEs) of Chen et al. [Che+18] for training deep learning

models, to then study their approximation capabilities towards the end of the chapter.

4.1 From Deep Residual Networks to Neural Ordinary Di↵er-

ential Equations

Deep residual networks, introduced by He et al. [He+16a], have emerged as a family of

extremely deep architectures showing compelling accuracy and good convergence rates in

image recognition amongst other tasks. In a general form, such models build complicated

transformations by composing a sequence of transformations to a hidden state

yt = e(xt) + f(xt, ✓t)

xt+1 = g(yt)
(4.1)

where t 2 {t0, ..., tN}; xt, xt+1 2 Rn are the input and output of the hidden state at

layer t which depend on some parameters ✓t 2 Rm, f : Rn
! Rn is some di↵erentiable

4.1 From Deep Residual Networks to Neural Ordinary Di↵erential Equations 25

function which preserves the dimension of xt (usually a convolutional neural network -

CNN [LKF10]), e and g are some mappings which could in principle be non-linear. From

this general form, we see that deep residual networks are described in form of a discrete

dynamical system [Wei17].

In particular, He et al. [He+16a] consider the case when e(xt) = xt is an identity mapping

and g is a ReLU function. However, a main result of [He+16b], found through numerous

numerical experiments, shows that for very deep networks (hundreds of thousands of

layers), training is the easiest if both g and e are the identity map. We refer to [Wei17,

pp. 5-6] for a dynamical systems viewpoint to such a phenomenon. Now, if we let g and

e both be identity maps, system (4.1) becomes

xt+1 = xt + f(xt, ✓t). (4.2)

Not only in practice, the new family of deep residual networks promise good approximation

capabilities in theory as well. Lin et al. [LJ18] demonstrate that a very deep residual

network4 with hidden states that have one unit per hidden layer and ReLU activation

functions can uniformly approximate any Lebesgue-integrable5 function in n dimensions,

i.e. L1(Rn). Concretely, Lin et al. show that for any Lebesgue-integrable function h :

Rn
! R, for any ✏ > 0, there exists a residual network R such that

Z

Rn

|h(x)�R(x)|dx ✏.

The residual network in their construction is of the following form:

R(x) = L � (Id + TN) � (Id + TN�1) � · · · � (Id + T0)(x)

where L : Rn
! R is a linear operator and Ti are basic one-unit residual blocks, i.e.

functions TU,V,u from Rn to Rn defined by

TU,V,u(x) = V ReLU(Ux+ u)

where U 2 R1⇥n, V 2 Rn⇥1, u 2 R.

A significant work has been done recently to underpin the relationship between neural

networks and di↵erential equations [Lu+17], [HR17], [Li+17], [RH18]. In particular, the

4Note that the result of Lin et al. [LJ18] does not give a bound on the depth of the network, as

opposed to the results of chapter (3).
5A function h : Rn

! R is Lebesgue-integrable if
R
Rn | h(x) | dx < 1.

26 4 NEURAL ORDINARY DIFFERENTIAL EQUATIONS

iterative updates of residual networks (4.2) can be seen as an Euler discretization of a

continuous transformation [Lu+17], [HR17], [RH18], i.e. the di↵erence xt+1 � xt can be

interpreted as a discretization of the derivative dx(t)/dt with timestep �t = 1. Letting

�t ! 0 gives rise to a family of models called Neural Ordinary Di↵erential Equations

(Neural ODEs) [Che+18], where the continuous dynamics of hidden units is parameterized

by an ordinary di↵erential equation (ODE) specified by a neural network

lim
�t!0

xt+�t � xt

�t
=

dx(t)

dt
= f(x(t), ✓, t)

or, simply,

ẋ(t) = f(x(t), ✓, t)6.

Starting from the input layer x(t0), we can define the output layer x(tN) to be the so-

lution to this ODE initial value problem at some time tN . The hidden state at time

tN , i.e. x(tN), corresponds to the features learned by the model. In other words, in

Neural ODEs we map x(t0) to an output x(tN) by solving an ODE starting from x(t0).

We denote this map by �. We can then adjust the dynamics of the system (encoded by

f) such that the ODE transforms x(t0) to a x(tN) which is close to the true output vector.

ODE

Figure 4: This figure has been reproduced from [DDT19, Figure 2] and depicts a diagram

of Neural ODE architecture composed of an ODE layer and a linear layer.

However, we are often interested in learning functions from Rn to R7, e.g. for regression

or classification. To define a model from Rn to R, we follow the construction given by

6Surprisingly, Chen et al. [Che+18] in this step drop the direct dependence of ✓ on time t.
7We simplified here to functions from Rn to R. Neural ODEs for image classification problems learn

function from Rn to the discrete label set Y.

4.2 Function Approximation by Dynamical Systems 27

Lin et al. [LJ18] for residual networks. We define the Neural ODE g : Rn
! R as

g(x) = L(�(x(t0))) = L(x(tN)) where L : Rn
! R is a linear map and � : Rn

! Rn is a

mapping from data to features. As shown in figure (4), this is a simple model architecture:

an ODE layer, followed by a linear layer. Neural ODE models have shown great promise

on a number of tasks including modeling continuous time data and building normalizing

flows with low computational cost [Che+18], [Gra+18]. Their desirable properties, such

as invertibility and parameter e�ciency, have led to more research on Neural ODEs from

the perspectives of optimization techniques [Pas+17], [Che+18], [Qua+19], approxima-

tion capabilities [DDT19] and generalization [Liu+19], [Yan+19].

Concerning the optimization of Neural ODEs, reverse-mode di↵erentiation (backpropaga-

tion) through the ODE solver can be performed in order to train such continuous-depth

networks [Pas+17]. However, this training procedure is computationally and memory

ine�cient [Che+18]. To overcome this issue, Chen et al. [Che+18] propose computing

gradients using the adjoint sensitivity method [Pon+62]. The first rigorous version of this

method appears in the Mathematical Theory of Optimal Processes textbook [Pon+62]

under the name Pontryagin’s Maximum Principle (PMP). This classical version was then

improved by other authors, such as the versions appearing in [AF66], [Ber74], [Lib12],

which show that the PMP approach computes gradients by solving a second, augmented

ODE backwards in time and is applicable to all ODE solvers. In the next sections we try

to develop a rather formal optimal control approach to find e�cient optimization tech-

niques for training continuous-depth deep learning networks, from which Neural ODEs

are derived as a special case. We state precisely the assumptions under which the PMP

holds.

4.2 Function Approximation by Dynamical Systems

Let’s start with a description of the (continuous) dynamical systems approach to machine

learning introduced by E [Wei17]. As usual, we want to approximate some function

h : X ! Y

which maps inputs in X ⇢ Rn (e.g. images, time-series) to labels in Y (categories,

numerical predictions). Given a collection of d sample input-label pairs {xi, yi = h(xi)}d
i=1,

we wish to approximate h using these data points. In the dynamical systems framework,

the given inputs are considered as the initial condition, i.e. x0 = (x1, ...,xd) 2 Rn⇥d, of a

system of ordinary di↵erential equations

28 4 NEURAL ORDINARY DIFFERENTIAL EQUATIONS

ẋ
i(t) = f(xi(t), ✓(t), t), x

i(t0) = x
i

0, t0 t tN , (4.3)

where ✓ : [t0, tN] ! ⇥ ⇢ Rm represents the control (training) parameters and x(t) =

(x1(t), ...,xd(t)) 2 Rn⇥d for all t 2 [t0, tN]. The form of f is chosen as part of the

deep learning model and it is typically the composition of a linear transformation and

a component-wise non-linear activation function. For the solution to (4.3) to exist for any

✓, it is assumed that f and @f/@x are continuous in x, ✓, t. For the ith input sample, the

prediction of the network is a deterministic transformation of the terminal state L(xi(tN))

for some L : Rn
! Y , which we can view collectively as a function of the initial state

(input) xi

0 and the control parameters (weights) ✓. The results from the optimal control

theory of the next section (4.3) allow us to consider quite a general space of controls, such

as the set of all Lebesgue measurable controls

U := {✓ : [t0, tN] ! ⇥ : ✓ is Lebesgue measurable}.

The goal is to choose ✓ from U so that L(xi(tN)) most closely resembles yi for i 2 [d].

We define a loss function L : Y ⇥ Y ! R which is minimized when its arguments are

equal, and we consider minimizing
P

i
L[L(xi(tN)), yi]. Since L is fixed, Li et al. [Li+17]

absorb it into the definition of the loss function by defining Li(·) := L(·, yi). Then, they

formulate the problem in form of the following optimization problem:

min
✓2U

dX

i=1

Li(x
i(tN)) +

Z
tN

t0

R(✓(t))dt

ẋ
i(t) = f(xi(t), ✓(t), t), x

i(t0) = x
i

0, t0 t tN , i 2 [d]

(4.4)

where R : ⇥ ! R is a running cost, or the regularizer. Considering the fact that most

current machine learning models do not regularize the states, Li et al. [Li+17] omit the

general case of R depending on x(t).

Problem (4.4) is a special case of a class of general optimal control problem for ordi-

nary di↵erential equations [AF66]. This formulation allows for deriving the optimality

conditions of (4.4) entirely in continuous time and find numerical algorithms that can

subsequently be discretized. Note that this approach of first optimizing and then dis-

cretizing is an alternative approach to deep learning [Li+17]. In E [Wei17], deep residual

networks [He+16a] were considered as the forward Euler discretization of the continuous

4.3 Optimal Control Theory 29

approach described above. Hence, the algorithms presented later can also be formulated

in the context of deep residual networks.

For simplicity of notation, Li et al. [Li+17] set d = 1 and drop the scripts i on all functions,

noting that similar results can be obtained in the general case since the dynamics and

loss functions are decoupled across samples. In other words, this can be thought as

e↵ectively concatenating all d sample inputs into a single input vector of dimension n⇥ d

and redefining the dynamics accordingly. Hence, all results remain valid by performing

full-batch training [Li+17] and problem (4.4) can be reformulated as follows:

min
✓2U

L(x(tN)) +

Z
tN

t0

R(✓(t))dt

ẋ(t) = f(x(t), ✓(t), t), x(t0) = x0, t0 t tN .

(4.5)

Next sections are devoted to finding conditions for optimal solutions of (4.5).

4.3 Optimal Control Theory

We dedicate this section to studying a generalization of the celebrated Pontryagin’s Min-

imum Principle (PMP)8 in optimal control given by Athans et al. [AF66]. The proof

of the PMP and its variants can be found in any of the optimal control theory text-

books [Pon+62], [AF66], [Lib12]. We will follow the comprehensive study of Athans et

al. [AF66], who present a general version of the PMP, from which, as a special case, Li

et al. [Li+17] introduce a set of necessary conditions for optimal solutions of (4.5).

Athans et al. [AF66] start by stating a very general control problem (4.2) and then

they carefully delineate a special case of that control problem. Next they give a precise

statement of the necessary conditions for optimality, first presented by Pontryagin et

al. [Pon+62], which constitute the minimum principle in the special case of the control

problem. By various changes of variable, Athans et al. [AF66] show that the minimum

principle for the general problem can be obtained from the results for the special problem.

8The di↵erence between the notation Pontryagin’s Maximum Principle and Pontryagin’s Minimum

Principle will be clarified in remark (4.9). Since they both refer to the same problem we use the common

notation PMP.

30 4 NEURAL ORDINARY DIFFERENTIAL EQUATIONS

4.3.1 Admissible Controls

The vector space Rn of the vector variable x is the phase space of the object under consid-

eration, whose state at any instant of time is characterized by x1, x2, ..., xn. It is assumed

that the object is equipped with certain controllers (parameters), characterized by points

✓, of a certain control region ⇥, an arbitrary set in Rm.

Pontryagin et al. [Pon+62, p. 75] give the first and the most precise definition of a

control and the class of admissible controls. Every function ✓ = ✓(t), defined on some

time interval t0 t tN , with range in ⇥, is called a control. Since ⇥ is a set in the

space of the control parameters ✓1, ✓2, ..., ✓m, each control

✓(t) = (✓1(t), ✓2(t), ..., ✓m(t))

is a vector function (given for t0 t tN) whose range is in ⇥. The control ✓(t), t0 t

tN , is called measurable if the set of all t for which ✓(t) 2 O is measurable (in the sense

of ordinary Lebesgue measure) in the interval t0 t tN , for every open set O ⇢ Rm;

and it is called bounded if the set of points ✓(t), t0 t tN , has a compact closure in

Rm. Pontryagin et al. [Pon+62, p. 75] then define a class U of controls, satisfying the

conditions:

1. All the controls ✓(t), t0 t tN , which belong to the class U are measurable and

bounded.

2. If ✓(t), t0 t tN , is an admissible control, ⌘ is an arbitrary point of ⇥, and t0 and

t00 are numbers such that t0 t0 t00 tN , the control ✓1(t), t0 t tN , defined

by the formula

✓1(t) =

8
<

:
⌘ for t0 t t00

✓(t) for t0 t t0 or t00 t tN

is also admisible.

3. If the interval t0 t tN is broken up by means of subdivision points into a

finite number of subintervals, on each of which the control ✓(t) is admissible, then

this control is also admissible on the entire interval t0 t tN . An admissible

control considered on a subinterval is also admissible. A control obtained from

an admissible control ✓(t), t0 t tN , by a translation in time (i.e. the control

✓1(t) = ✓(t� ↵), t0 + ↵ t tN + ↵) is also admissible.

4.3 Optimal Control Theory 31

Controls belonging to the class U are called admissible. For the class of admissible con-

trols one may, for instance, take the set of all measurable9 and bounded controls, which

contains every other class of admissible controls as a subclass [Pon+62, p. 76].

Another example is the set of all piecewise continuous controls (with range in ⇥), i.e.

controls ✓ = ✓(t) which are continuous for all t under consideration, with the exception of

only a finite number of t, at which ✓(t) may have discontinuities of the first kind. From

the definition of discontinuities of the first kind, it is assumed the existence of the finite

limits [Pon+62, p. 10]

✓(⌧ � 0) = lim
t!⌧
t<⌧

✓(t), ✓(⌧ + 0) = lim
t!⌧
t>⌧

✓(t)

at a point of discontinuity, ⌧ . In particular, it therefore follows that every control ✓(t)

is bounded (even if ⇥ is not). For completeness, it is assumed that at each point of

discontinuity, ⌧ , the value of ✓(t) is equal to its left-hand limit

✓(⌧) = ✓(⌧ � 0)

and that each control ✓(t) under consideration is continuous at the endpoints of the in-

terval t0 t tN , on which it is given. 10

Being the most interesting class for the practical applications, we will fix for the rest

of this chapter the class of admissible controls U to be the set of all bounded piecewise

continuous functions ✓(t) on [t0, tN]. This class of admissible controls corresponds to the

assumption of inertialess controllers, since the values of the function ✓(t) may jump (at an

instant of discontinuity) instantaneously from one point of the control region to another.

Pontryagin et al. [Pon+62, Chapter V] show that the control problem in optimal control

theory, to be formulated in section (4.3.2), is a (highly non-trivial) generalization of the

problem of Lagrange in the calculus of variations, and is equivalent to the latter in the

case where the control region ⇥ is an open set in Rm. Thus, an essential advantage of

the minimum principle over the classical theorems in the calculus of variations is the fact

that this principle is applicable for any (in particular, closed) set ⇥ ⇢ Rm. This extension

9The class of measurable controls is obtained from that of piecewise continuous controls by taking the

closure with respect to the a.e. convergence [Lib12, p. 86].
10This assumption is made in order to avoid having to add the phrase ”except possibly on a countable

subset” to many of the statements.

32 4 NEURAL ORDINARY DIFFERENTIAL EQUATIONS

of the class of possible control regions ⇥ is highly essential in engineering applications of

the theory. That’s why we follow the results presented in the optimal control theory.

4.3.2 Statement of the Control Problem

We assume that the object’s law of motion can be written in the form of a nth-order

system of di↵erential equations

ẋ = f(x, ✓, t). (4.6)

Let R(x, ✓, t) be a real-valued function on Rn
⇥ Rm

⇥ (T0, TN), and let L(x, t) be a

real-valued function on Rn
⇥ (T0, TN). Further, we suppose that S is a given subset of

Rn
⇥ (T0, TN) so that the elements of S are pairs (x, t) consisting of a state x and a point

t in the interval of definition of the system.

We now make the following assumptions:

A1) If f1(x, ✓, t), f2(x, ✓, t), ..., fn(x, ✓, t) denote the components of f(x, ✓, t), then we as-

sume that the functions

fi(x, ✓, t),
@fi
@x

(x, ✓, t),
@fi
@t

(x, ✓, t) i = 1, 2, ..., n

and the functions

R(x, ✓, t),
@R

@x
(x, ✓, t),

@R

@t
(x, ✓, t)

are continuous on Rn
⇥⇥⇥ (T0, TN), where ⇥ is the closure of ⇥ in Rm.

A2) We assume that S is of the form S = Rn
⇥ (T0, TN).

A3) If L(x, t) is the given real-valued function defined on Rn
⇥ (T0, TN) and if we assume

that S is of the form of A2), then L(x, t) is independent of t, i.e. L(x, t) = L(x),

and the functions L(x), @L
@x (x),

@
2
L

@x2 (x) are continuous.

Under these assumptions, the set S is called the target set and L the terminal cost (loss)

function.

Then, for all x0 in Rn, all t0 and t in (T0, TN) with t � t0, and all ✓(t0,t] with ✓ in U , there

is a unique solution x(⌧) [AF66, Theorem 3-14] of the vector di↵erential equation (4.6)

ẋ(⌧) = f (x(⌧), ✓(⌧), ⌧)

defined on the interval [t0, t] with

x(t0) = x0.

4.3 Optimal Control Theory 33

We write

x(t) = %(t; ✓(t0,t],x0)

to represent this solution, called the state equation.

% is a continuous function of all its arguments which satisfies the following conditions

[AF66, p. 169]:

1. x0 = %(t0; ✓(t0,t],x0).

2. %(t; ✓(t0,t],x0) = %(t; ✓(t̂,t], %(t̂; ✓(t0,t̂],x0)) for all t̂ in [t0, t].

3. If ✓ = ⌘ on (t0, t], then, for all ⌧ in [t0, t],

%(⌧ ; ✓(t0,⌧],x0) = %(⌧ ; ⌘(t0,⌧],x0).

Let’s now state the definitions leading to the formal statement of the control problem.

Definition 4.1. [AF66, Definition 5-8]

Let t0 be an element of (T0, TN) and let x0 be an element of Rn. Then the admissible

control ✓ takes (x0, t0) to S, where S is the target set, if the set

�
(%(t; ✓(t0,t],x0), t) : t � t0

intersects S. If ✓ takes x0 to S and if tN is the first instant of time after t0 when the

motion x(t) = %(t; ✓(t0,t],x0) enters S and if

xN = x(tN) = %(tN ; ✓(t0,tN],x0)

then the well-defined number J(x0, ✓, t0) given by

J(x0, ✓, t0) = L(xN , tN) +

Z
tN

t0

R(x(t), ✓(t), t)dt

= L[%(tN ; ✓(t0,tN],x0), tN] +

Z
tN

t0

R[%(t; ✓(t0,t],x0), ✓(t), t]dt

is called the cost functional of the control ✓. tN is called the terminal time and xN the

terminal state.

Definition 4.2 (The Control Problem). [AF66, Definition 5-9]

The control problem for the system equation (4.6) under assumptions A1) - A3) and with

respect to target set S, the cost functional J(x0, ✓, t0), the set U of admissible controls, and

the initial value x0 at the initial time t0 is: Determine the control ✓ in U which minimizes

the cost functional J(x0, ✓, t0), or simply J(✓).

34 4 NEURAL ORDINARY DIFFERENTIAL EQUATIONS

4.3.3 Pontryagin’s Minimum Principle

Having stated the general control problem, Athans et al. [AF66] delineate a special case

of it by listing additional assumptions:

A4) The system equation (4.6) does not depend on t explicitly, i.e. the system equation

is of the form

ẋ = f(x, ✓). (4.7)

A5) The function R does not depend on t explicitly, and the function L is identically zero

(that is, L(x, t) ⌘ 0), so that the cost functional J(✓) is given by

J(✓) =

Z
tN

t0

R(x(t), ✓(t))dt. (4.8)

Hence, we can reformulate the control problem (4.2) together with the additional assump-

tions A4) and A5) in the following way:

min
✓2U

Z
tN

t0

R (x(t), ✓(t)) dt

ẋ(t) = f(x(t), ✓(t)), x(t0) = x0, t0 t tN .

(4.9)

Before giving a set of necessary conditions for optimal solutions of (4.9), Athans et al.

[AF66] introduce some additional terminology and notation as follows:

Definition 4.3 (Hamiltonian function). [AF66, Definition 5-10]

Let H(x,p, ✓) denote the real-valued function of the n vector x, the n vector p, and the

m vector ✓, given by:

H(x,p, ✓) = R(x, ✓) + hp, f(x, ✓)i

where f(x, ✓) is the function which determines our system (i.e. the right hand side of the

state equation (4.7)) and R(x, ✓) is the integrand of the cost functional. H(x,p, ✓) is said

to be the Hamiltonian of our problem and p is called a costate vector.

Note that, in view of the assumption A1), the functions H(x,p, ✓) and @H

@x (x,p, ✓) are

continuous on Rn
⇥Rn

⇥⇥. Moreover, we observe that @H

@p (x,p, ✓) is well defined and is

given by

@H

@p
(x,p, ✓) = f(x, ✓).

4.3 Optimal Control Theory 35

Now, if we assume that x0 is our initial state and that t0 is our initial time, and if x̂(t)

denotes the trajectory of our system starting from x0 = x̂(t0) generated by ✓̂(t), then, for

any function p(t),

˙̂x(t) =
@H

@p
(x̂(t),p(t), ✓̂(t)) = f(x̂(t), ✓̂(t)).

In addition, if ⇡ is any n vector, then the linear di↵erential equation

ṗ(t) = �
@H

@x
(x̂(t),p(t), ✓̂(t))

= �
@R

@x
(x̂(t), ✓̂(t))�

✓
@f

@x
(x̂(t), ✓̂(t))

◆0

p(t) (4.10)

has a unique solution p(t, ⇡) satisfying the initial condition

p(t0, ⇡) = ⇡.

These observations lead to the following definition:

Definition 4.4 (Hamiltonian system). [AF66, Definition 5-11]

The 2nth-order system of di↵erential equations

ẋ =
@H

@p
(x,p, ✓) = f(x, ✓)

ṗ = �
@H

@x
(x,p, ✓) = �

@R

@x
(x, ✓)�

✓
@f

@x
(x, ✓)

◆0

p

is called the Hamiltonian system associated with our problem. If ✓̂(t) is an admissible

control with x̂(t) as corresponding trajectory, then any solution p̂(t) of the system (4.10)

corresponds to ✓̂(t) and x̂(t). In other words, p̂(t) corresponds to ✓̂(t) if p̂(t) and x̂(t) are

a solution of the Hamiltonian system.

The following theorem then gives the necessary optimal conditions for the control problem

(4.2) satisfying A1) - A5), or equivalently, the necessary optimal conditions for the problem

(4.9).

Theorem 4.5 (Pontryagin’s Minimum Principle). [AF66, Theorem 5-6]

Let ✓⇤(t) be an admissible control which transfers (x0, t0) to S = Rn
⇥(T0, TN). Let x⇤(t) be

the trajectory of equation (4.7) corresponding to ✓⇤(t), originating at (x0, t0), and meeting

S (for the first time) at tN (that is, x
⇤(tN) 2 Rn). In order that ✓⇤(t) be optimal for the

cost functional (4.8), it is necessary that there exist a vector function p
⇤(t) such that:

36 4 NEURAL ORDINARY DIFFERENTIAL EQUATIONS

i) p
⇤(t) corresponds to ✓⇤(t) and x

⇤(t), so that p
⇤(t) and x

⇤(t) are a solution of the

Hamiltonian system

ẋ
⇤(t) =

@H

@p
(x⇤(t),p⇤(t), ✓⇤(t))

ṗ
⇤(t) = �

@H

@x
(x⇤(t),p⇤(t), ✓⇤(t))

satisfying the boundary conditions

x
⇤(t0) = x0, x

⇤(tN) 2 Rn.

ii) The function H(x⇤(t),p⇤(t), ✓) has an absolute minimum 11 as a function of ✓ over

⇥ at ✓ = ✓⇤(t) for t in [t0, tN], that is,

min
✓2⇥

H(x⇤(t),p⇤(t), ✓) = H(x⇤(t),p⇤(t), ✓⇤(t))

or, equivalently,

H(x⇤(t),p⇤(t), ✓⇤(t)) H(x⇤(t),p⇤(t), ✓), for all ✓ 2 ⇥.

iii) The function H(x⇤(t),p⇤(t), ✓⇤(t)) = 0 for t 2 [t0, tN].

iv) The vector p
⇤(tN) is the zero vector, that is, p⇤(tN) = 0.

The proof of the theorem (4.5), first presented in [Pon+62], makes frequent use of ge-

ometric ideas which help us to get a more intuitive way of understanding its necessary

optimality conditions.

The proof starts by introducing an auxiliary variable x0 such that

ẋ0(t) = R(x(t), ✓(t)), x0(t0) = 0.

This immediately gives

J(x0, ✓, t0) =

Z
tN

t0

R(x(t), ✓(t))dt

=

Z
tN

t0

ẋ0(t)dt = x0(tN).

11A point x⇤ in X is said to be an absolute minimum (maximum) of a real-valued function g of a vector

x if g(x⇤) g(x), respectively g(x⇤) � g(x), for all x in X ✓ Rn.

4.3 Optimal Control Theory 37

Considering the (n+ 1)st-order system

ẋ0(t) = R(x(t), ✓(t))

ẋ(t) = f(x(t), ✓(t))
(4.11)

then the special problem (general control problem (4.2) together with the assumptions

A4) and A5) of the section (4.3.2)) may be rephrased as follows:

Given the (n+1)st-order system (4.11); given the initial time t0 and the initial condition

(0,x0), i.e. x0(t0) = 0 in Rn+1. Let S = S 0
⇥(T0, TN) be the target set (in Rn+1

⇥(T0, TN))

where S 0 is the line in Rn+1 through (0,xN) and parallel to the x0 axis. S 0 is given by the

equations

x1 � xN1 = 0, x2 � xN2 = 0, ..., xn � xNn = 0

where the xNj are the components of the vector xN . Then determine the ✓ which trans-

fers

 "
0

x0

#
, t0

!
to S 0

⇥(T0, TN) and which, in so doing, minimizes x0 at the terminal time.

In other words, we want to find the trajectory of the system (4.11), starting from the

point (0,x0), which intersects the line S 0 in a point with smallest x0 coordinate.

The geometric situation is illustrated in figure (5). The top part of the figure exhibits

an optimal (⇤) trajectory in Rn+1. Often the state space is indicated as the xixj plane,

and the cost axis (x0) is viewed as pointing upward. In the bottom part of figure (5) the

state space has been compressed into a single axis (the x axis). The arrows indicate the

motion of a point (in Rn or Rn+1) as time increases. t⇤ denotes the terminal time, so that

x
⇤(t⇤) = xN .

4.3.4 Pontryagin’s Minimum Principle: Change of Variable

Athans et al. [AF66, pp. 291-303] show, by various changes of variable, how the mini-

mum principle for the general control problem (4.2) can be obtained from theorem (4.5).

Keeping the assumptions of sections (4.3.2), (4.3.3) in force, they start by removing the

restriction of time independence for the system and the cost functional, and then they

treat the problem in which there is a terminal cost function. In both cases the problem is

reduced to the special case (general control problem (4.2) together with the assumptions

A4) and A5) of the section (4.3.2)).

38 4 NEURAL ORDINARY DIFFERENTIAL EQUATIONS

Figure 5: This figure has been reproduced from [AF66, Figure 5-16] and depicts the

geometric interpretation of the control problem (4.2) under assumptions A4) and A5).

4.3.4.1 Time-dependent System and Cost Functional

Let’s suppose that the system equation is of the form

ẋ(t) = f(x(t), ✓(t), t) (4.12)

and let’s assume that the target set S is of the form

S = Rn
⇥ (T0, TN).

4.3 Optimal Control Theory 39

We also suppose that R is of the form

R(x, ✓, t)

and that the cost functional J(✓) is given by

J(✓) =

Z
tN

t0

R(x(t), ✓(t), t)dt, tN free. (4.13)

As usual, we let x0 be the initial state and t0 be the initial time.

The aim is to reduce the control problem for time-dependent system (4.12) with cost

functional (4.13) to the special problem of section (4.3.2). To achieve that, Athans et al.

[AF66] first let xn+1 denote an auxiliary variable and consider the (n+ 1)st-order system

ẋ(t) = f(x(t), ✓(t), xn+1)

ẋn+1(t) = 1.
(4.14)

Then they examine the following (auxiliary) control problem for the system (4.14):

Given the initial time t0 and the initial condition

"
x0

t0

#
(that is, xn+1(t0) = t0) in Rn+1.

Let S = Rn+1
⇥ (T0, TN) be the target set. Then determine the admissible control ✓

which transfers

 "
x0

t0

#
, t0

!
to Rn+1

⇥ (T0, TN) and which, in so doing, minimizes the cost

functional J1(✓), given by

J1(✓) =

Z
tN

t0

R(x(t), ✓(t), xn+1(t))dt, tN free.

We observe that this problem is equivalent to our original problem (for the system (4.12))

in the sense that a control is optimal for one i↵ it is optimal for the other. Furthermore,

this new problem is precisely of the form of special problem of section (4.3.2). Thus,

theorem (4.5) may be applied to deduce that if ✓⇤(t) is optimal, then there are a function

p
⇤(t) and a function p⇤

n+1(t) such that the following conditions are satisfied:

1.

ẋ
⇤(t) =

@H1

@p
(x⇤(t),p⇤(t), ✓⇤(t), x⇤

n+1(t), p
⇤
n+1(t))

ṗ
⇤(t) = �

@H1

@x
(x⇤(t),p⇤(t), ✓⇤(t), x⇤

n+1(t), p
⇤
n+1(t))

ẋ⇤
n+1(t) =

@H1

@pn+1
(x⇤(t),p⇤(t), ✓⇤(t), x⇤

n+1(t), p
⇤
n+1(t)) = 1

ṗ⇤
n+1(t) = �

@H1

@xn+1
(x⇤(t),p⇤(t), ✓⇤(t), x⇤

n+1(t), p
⇤
n+1(t))

40 4 NEURAL ORDINARY DIFFERENTIAL EQUATIONS

where H1(x,p, ✓, xn+1, pn+1) is given by the equation

H1(x,p, ✓, xn+1, pn+1) = R(x, ✓, xn+1) + hp, f(x, ✓, xn+1)i+ pn+1 · 1

and where

x
⇤(t0) = x0, x⇤

n+1(t0) = t0

x
⇤(tN) 2 Rn, x⇤

n+1(tN) = tN .

2. The functionH1(x⇤(t),p⇤(t), ✓, x⇤
n+1(t), p

⇤
n+1(t)) has an absolute minimum as a function

of ✓ over ⇥ at ✓ = ✓⇤(t) for t in [t0, tN].

3. H1(x⇤(t),p⇤(t), ✓⇤(t), x⇤
n+1(t), p

⇤
n+1(t)) = 0 for t in [t0, tN].

4. The n+ 1 vector

"
p
⇤(tN)

p⇤
n+1(tN)

#

is the zero vector in Rn+1, that is,

p
⇤(tN) = 0, p⇤

n+1(tN) = 0.

Now, these results can be applied to our original problem (for the system (4.12)) by noting

that the auxiliary variable xn+1 is, in fact, the time t. Thus, for our original problem, we

define a function H(x,p, ✓, t) of the n vector x, the n vector p, the m vector ✓, and the

time t by setting

H(x,p, ✓, t) = R(x, ✓, t) + hp, f(x, ✓, t)i. (4.15)

H is called the Hamiltonian of our problem and p the costate variable. We then have:

Theorem 4.6 (PMP for the Time-dependent Problem with Moving Target Set). [AF66,

Theorem 5-9]

Let ✓⇤(t) be an admissible control which transfers (x0, t0) to the target set S = Rn
⇥

(T0, TN). Let x⇤(t) be the trajectory of equation (4.12) corresponding to ✓⇤(t), originating

at (x0, t0), and meeting S at tN . In order that ✓⇤(t) be optimal for the cost functional

(4.13), it is necessary that there exist a function p
⇤(t) such that:

4.3 Optimal Control Theory 41

i) p
⇤(t) corresponds to ✓⇤(t) and x

⇤(t) so that p
⇤(t) and x

⇤(t) are a solution of the

Hamiltonian system

ẋ
⇤(t) = @H

@p (x
⇤(t),p⇤(t), ✓⇤(t), t)

ṗ
⇤(t) = �

@H

@x (x
⇤(t),p⇤(t), ✓⇤(t), t)

satisfying the boundary conditions

x
⇤(t0) = x0, (x⇤(tN), tN) 2 S.

ii) The function H(x⇤(t),p⇤(t), ✓, t) has an absolute minimum as a function of ✓ over ⇥

at ✓ = ✓⇤(t) for t in [t0, tN], that is,

min
✓2⇥

H(x⇤(t),p⇤(t), ✓, t) = H(x⇤(t),p⇤(t), ✓⇤(t), t)

or, equivalently,

H(x⇤(t),p⇤(t), ✓⇤(t), t) H(x⇤(t),p⇤(t), ✓, t), for all ✓ in ⇥.

iii) The function H(x⇤(t),p⇤(t), ✓⇤(t), t) satisfies the relations

H(x⇤(t),p⇤(t), ✓⇤(t), t) = �

Z
tN

t

@H

@t
(x⇤(⌧),p⇤(⌧), ✓⇤(⌧), ⌧)d⌧ (4.16)

H(x⇤(tN),p
⇤(tN), ✓

⇤(tN), tN) = 0.

iv) p
⇤(tN) is the zero vector, that is,

p
⇤(tN) = 0.

Athans et al. [AF66] note that the main di↵erence between theorems (4.5) and (4.6) is

the di↵erence in the behavior of the Hamiltonians along the optimal trajectory. In the

time-independent problem of theorem (4.5), the Hamiltonian is zero along the optimal

path, while in the time-dependent problem at hand, the Hamiltonian varies with time in

accordance with equation (4.16) along the optimal path. We next observe that, in view

of the fact that xn+1(t) = t, the crucial relation which allows us to deduce theorem (4.6)

from conditions 1 to 4, satisfied by the optimum in the new (or auxiliary) problem, is

H1(x,p, ✓, t, pn+1) = H(x,p, ✓, t) + pn+1.

This relation implies that, for given values of x,p, and t, the value of ✓ in ⇥ which

minimizes H will also minimize H1 (for any value of pn+1), and vice versa. Moreover, this

relation combined with the fact that

ṗ⇤
n+1(t) = �

@H

@t
(x⇤(t),p⇤(t), ✓⇤(t), t), p⇤

n+1(tN) = 0,

as @H1/@xn+1 = @H(x,p, ✓, xn+1)/@xn+1, enables us to deduce condition iii) of theorem

(4.6).

42 4 NEURAL ORDINARY DIFFERENTIAL EQUATIONS

4.3.4.2 Terminal Cost Function Present

Until now, it was assumed that our cost functional did not involve a terminal cost (loss)

term (i.e. L(x, t) ⌘ 0). We will now remove that restriction. We once again suppose that

the system equation is of the form

ẋ(t) = f(x(t), ✓(t), t) (4.17)

and that x0 is our initial state, with t0 as our initial time. We assume that the target set

S is of the form

S = Rn
⇥ (T0, TN) (4.18)

We suppose that L(x, t) is a real-valued function on Rn
⇥ (T0, TN) such that

L(x, t),
@L

@x
(x, t),

@L

@t
(x, t),

@2L

@x2
(x, t),

@2L

@x@t
(x, t),

@2L

@t2
(x, t)

are all continuous. We assume then that our cost functional J(✓) is given by

J(✓) = L(x(tN), tN) +

Z
tN

t0

R(x(t), ✓(t), t)dt. (4.19)

Athans et al. [AF66] then reduce the control problem for the system (4.17) with cost

functional (4.19) and target set S of equation (4.18) to a problem in which there is no

terminal cost function, which in turn allows to apply theorem (4.6) to deduce the desired

form of the minimum principle.

Since x(t0) = x0, we observe that

L(x(tN), tN) = L(x0, t0) +

Z
tN

t0

d

dt
[L(x(t), t)]dt.

However, we know that

d

dt
[L(x(t), t)] =

⌧
@L

@x
(x(t), t), ẋ(t)

�
+

@L

@t
(x(t), t)

=

⌧
@L

@x
(x(t), t), f(x(t), ✓(t), t)

�
+

@L

@t
(x(t), t). (4.20)

It follows that the cost functional J(✓) can also be given by

J(✓) = L(x0, t0) +

Z
tN

t0

R(x(t), ✓(t), t) +

⌧
@L

@x
(x(t), t), f(x(t), ✓(t), t)

�
+

@L

@t
(x(t), t)

�
dt.

4.3 Optimal Control Theory 43

Since x0 and t0 are given, L(x0, t0) is a known constant, hence it is obvious that the

problem of transferring (x0, t0) to S along a trajectory of equation (4.17) in such a way

as to minimize the cost functional J1(✓), given by

J1(✓) =

Z
tN

t0

R(x(t), ✓(t), t) +

⌧
@L

@x
(x(t), t), f(x(t), ✓(t), t)

�
+

@L

@t
(x(t), t)

�
dt

is equivalent to our original problem, in the sense that a control is optimal for one i↵ it

is optimal for the other.

By applying theorem (4.6) to this new problem, we may deduce that, if ✓⇤(t) is optimal,

then there is a function p
⇤
1(t) such that:

1.

ṗ
⇤
1(t) = �

@H1

@x
(x⇤(t),p⇤

1(t), ✓
⇤(t), t)

= �
@R

@x
(x⇤(t), ✓⇤(t), t)�

@

@x

⌧
@L

@x
(x, t), f(x, ✓, t)

�
+

@2L

@x@t
(x, t)

� ����
(x⇤(t),✓⇤(t),t)

�

✓
@f

@x
(x⇤(t), ✓⇤(t), t)

◆0

p
⇤
1(t). (4.21)

2.

p
⇤
1(tN) = 0. (4.22)

3.

min
✓2⇥

H1(x
⇤(t),p⇤

1(t), ✓, t) = H1(x
⇤(t),p⇤

1(t), ✓
⇤(t), t) (4.23)

where H1(x,p1, ✓, t) is given by

H1(x,p1, ✓, t) =

R(x, ✓, t) +

⌧
@L

@x
, f(x, ✓, t)

�
+

@L

@t
(x, t)

�
+ hp1, f(x, ✓, t)i

= R(x, ✓, t) +

⌧
p1 +

@L

@x
, f(x, ✓, t)

�
+

@L

@t
(x, t).

Now, if we consider the function H(x,p, ✓, t), given by

H(x,p, ✓, t) = R(x, ✓, t) + hp, f(x, ✓, t)i

and if we set

p
⇤(t) = p

⇤
1(t) +

@L

@x
(x⇤(t), t) (4.24)

44 4 NEURAL ORDINARY DIFFERENTIAL EQUATIONS

then we have, from equations (4.21) and (4.20),

ṗ
⇤(t) = �

@R

@x
(x⇤(t), ✓⇤(t), t)�

@2L

@x2
(x⇤(t), t)f(x⇤(t), ✓⇤(t), t)

+

✓
@f

@x
(x⇤(t), ✓⇤(t), t)

◆0 @L

@x
(x⇤(t), t) +

@2L

@x@t
(x⇤(t), t)

�

�

✓
@f

@x
(x⇤(t), ✓⇤(t), t)

◆0
p
⇤(t)�

@L

@x
(x⇤(t), t)

�

+
@2L

@x2
(x⇤(t), t)f(x⇤(t), ✓⇤(t), t) +

@2L

@x@t
(x⇤(t), t)

= �
@R

@x
(x⇤(t), ✓⇤(t), t)�

✓
@f

@x
(x⇤(t), ✓⇤(t), t)

◆0

p
⇤(t)

= �
@H

@x
(x⇤(t),p⇤(t), ✓⇤(t), t).

Moreover, since (@L/@t)(x⇤(t), t) does not depend explicitly on ✓, from equation (4.23) it

follows that

min
✓2⇥

H(x⇤(t),p⇤(t), ✓, t) = H(x⇤(t),p⇤(t), ✓⇤(t), t).

Finally, from equations (4.22) and (4.24), it follows that

p
⇤(tN) =

@L

@x
(x⇤(tN), tN).

We summarize these results in the following theorem:

Theorem 4.7 (PMP for the Terminal-cost Problem). [AF66, Theorem 5-11]

Let ✓⇤(t) be an admissible control which transfers (x0, t0) to the target set S = Rn
⇥

(T0, TN). Let x⇤(t) be the trajectory of equation (4.17) corresponding to ✓⇤(t), originating

at (x0, t0) and meeting S at tN . In order that ✓⇤(t) be optimal for the cost functional

(4.19), it is necessary that there exist a function p
⇤(t) such that:

i) p
⇤(t) corresponds to ✓⇤(t) and x

⇤(t) so that p
⇤(t) and x

⇤(t) are a solution of the

Hamiltonian system

ẋ
⇤(t) = @H

@p (x
⇤(t),p⇤(t), ✓⇤(t), t)

ṗ
⇤(t) = �

@H

@x (x
⇤(t),p⇤(t), ✓⇤(t), t)

satisfying the boundary conditions

x
⇤(t0) = x0, x

⇤(tN) free.

4.3 Optimal Control Theory 45

ii) The function H(x⇤(t),p⇤(t), ✓, t) has an absolute minimum as a function of ✓ over ⇥

at ✓ = ✓⇤(t) for t in [t0, tN], that is,

min
✓2⇥

H(x⇤(t),p⇤(t), ✓, t) = H(x⇤(t),p⇤(t), ✓⇤(t), t)

or, equivalently,

H(x⇤(t),p⇤(t), ✓⇤(t), t) H(x⇤(t),p⇤(t), ✓, t), for all ✓ in ⇥.

iii) The function H(x⇤(t),p⇤(t), ✓⇤(t), t) satisfies the relations

H(x⇤(t),p⇤(t), ✓⇤(t), t) = �
@L

@t
(x⇤(tN), tN)

�

Z
tN

t

@H

@t
(x⇤(⌧),p⇤(⌧), ✓⇤(⌧), ⌧) +

@2L

@t2
(x⇤(⌧), ⌧)

�
d⌧

H(x⇤(tN),p
⇤(tN), ✓

⇤(tN), tN) = �
@L

@t
(x⇤(tN), tN).

iv) The vector p
⇤(tN) satisfies

p
⇤(tN) =

@L

@x
(x⇤(tN), tN). (4.25)

In other words, theorem (4.7) gives us the set of necessary conditions for optimal solutions

of the following control problem:

min
✓2U

L(x(tN), tN) +

Z
tN

t0

R(x(t), ✓(t), t)dt

ẋ(t) = f(x(t), ✓(t), t), x(t0) = x0, t0 t tN .

(4.26)

Now it is obvious that the problem (4.5) of section (4.2), where we first studied the

continuous dynamical systems approach to machine learning, is a special problem of the

general problem (4.26). We derive the PMP version formulated in [Li+17] which gives

the set of necessary conditions for optimal solutions of problem (4.5) in two steps. First,

we do a refinement on the terminal time tN of the problems considered so far. Next, we

redefine the Hamiltonian, which in turn allows us to arrive to a maximum principle.

Remark 4.8. (Fixed Terminal Time)

If we were to consider problems in which the terminal time tN is a fixed element of (T0, TN)

with tN > t0, that is, our target set S is of the form

S = Rn
⇥ {tN},

46 4 NEURAL ORDINARY DIFFERENTIAL EQUATIONS

then the PMP is formulated in the same way as in theorem (4.7) with the condition iii)

being automatically satisfied and providing no additional information, and L = L(x(tN))

with no direct dependence on the terminal time [AF66, Theorem 5.10]. Similarly to section

(4.3.4.1), the proof follows by simply introducing an auxiliary variable xn+1 = t which in

turn allows reducing the problem of fixed terminal time to the special problem of section

(4.3.2).

Remark 4.9 (Hamiltonian maximization). [Lib12, pp. 96-97]

If we would define the Hamiltonian and the costate variable of equation (4.15) using a

di↵erent sign convention

Ĥ(x,p, ✓, t) = �R(x, ✓, t) + hp, f(x, ✓, t)i, p̂ = �p
⇤

then the function

Ĥ(x⇤(t), p̂(t), ✓, t) = �R(x⇤(t), ✓, t)� hp
⇤(t), f(x⇤(t), ✓, t)i

= �H(x⇤(t),p⇤(t), ✓, t)

would have an absolute maximum at ✓⇤(t) while x
⇤, p̂ would again be a solution of the

Hamiltonian system with respect to Ĥ

ẋ
⇤ = f(x⇤, ✓⇤, t) =

@Ĥ

@p
(x⇤, ✓⇤, t)

and

˙̂p = �ṗ
⇤ =

@H

@x
(x⇤,p⇤, ✓⇤, t) =

@R

@x
(x⇤, ✓⇤, t) +

✓
@f

@x
(x⇤, ✓⇤, t)

◆0

p
⇤

=
@R

@x
(x⇤, ✓⇤, t)�

✓
@f

@x
(x⇤, ✓⇤, t)

◆0

p̂ = �
@Ĥ

@x
(x⇤, p̂, ✓⇤, t).

This formulation, in terms of Hamiltonian maximization is equivalent to the maximiza-

tion for the cost functional �J (instead of minimization of the cost functional J) in our

control problem considered before. Hence, whether we arrive at a minimum principle or

a maximum principle is determined only by the sign convention, and has nothing to do

with whether the cost functional J is being minimized or maximized.

Finally, from the fact that problem (4.5) is a special problem of the general control problem

(4.26), theorem (4.7) and remarks (4.8), (4.9) we can formulate the PMP version given

by Li et al. [Li+17, Theorem 1] which gives the set of necessary conditions for optimal

solutions of problem (4.5). Obviously, the Hamiltonian for this special case is defined as

H(x,p, ✓, t) = �R(x) + hp, f(x, ✓, t)i

4.3 Optimal Control Theory 47

whereas our system equation is as before

ẋ(t) = f(x(t), ✓(t), t) (4.27)

and our cost functional is given by

J(✓) = L(x(tN)) +

Z
tN

t0

R(✓(t))dt. (4.28)

Then we can give the following theorem.

Theorem 4.10 (Pontryagin’s Maximum Principle for the Terminal-cost Problem with

Fixed-terminal-time). [Li+17, Theorem 1]

Let ✓⇤(t) be an admissible control which transfers (x0, t0) to the target set S = Rn
⇥ {tN}.

Let x⇤(t) be the trajectory of equation (4.27) corresponding to ✓⇤(t), originating at (x0, t0)

and meeting S at tN . In order that ✓⇤(t) be optimal for the cost functional (4.28)12, it is

necessary that there exist a function p
⇤(t) such that:

i) p
⇤(t) corresponds to ✓⇤(t) and x

⇤(t) so that p
⇤(t) and x

⇤(t) are a solution of the

Hamiltonian system

ẋ
⇤(t) = @H

@p (x
⇤(t),p⇤(t), ✓⇤(t), t) (4.29)

ṗ
⇤(t) = �

@H

@x (x
⇤(t),p⇤(t), ✓⇤(t), t) (4.30)

satisfying the boundary conditions

x
⇤(t0) = x0, x

⇤(tN) free. (4.31)

ii) The function H(x⇤(t),p⇤(t), ✓, t) has an absolute maximum as a function of ✓ over

⇥ at ✓ = ✓⇤(t) for t in [t0, tN], that is,

max
✓2⇥

H(x⇤(t),p⇤(t), ✓, t) = H(x⇤(t),p⇤(t), ✓⇤(t), t)

or, equivalently,

H(x⇤(t),p⇤(t), ✓⇤(t), t) � H(x⇤(t),p⇤(t), ✓, t), for all ✓ in ⇥. (4.32)

iii) The vector p
⇤(tN) satisfies

p
⇤(tN) = �

@L

@x
(x⇤(tN)). (4.33)

12Note that theorem (4.10) is true, in general, for a cost functional where the regularization term

R = R(x(t), ✓(t), t).

48 4 NEURAL ORDINARY DIFFERENTIAL EQUATIONS

From equations (4.29), (4.30), (4.31), (4.32), (4.33) of theorem (4.10) we can solve for

the unknowns x
⇤,p⇤, ✓⇤ simultaneously as a function of t. Thus, the resulting optimal

control ✓⇤ is open-loop, i.e. ✓⇤(t) = ✓⇤(x⇤(t0), t), and is not in a feed-back form ✓⇤(t) =

✓⇤(x⇤(t), t) [Li+17]. The latter is of closed-loop type and are usually obtained from

dynamic programming and the Hamilton-Jacobi-Bellman formalism [Bel57]. From this

viewpoint, the PMP gives a weaker control. However, open-loop solutions are su�cient

for neural network applications, where the trained weights and treshold values are fixed

and only depend on the layer number and not the inputs [Li+17].

Note that the PMP is only a necessary condition, hence the solution to it is not always

globally optimal for (4.26). However, in applications the PMP is often strong enough to

give good solution candidates, and when certain convexity assumptions are satisfied the

PMP becomes su�cient [BP07]. In the following, let’s discuss an algorithm to solve the

PMP numerically.

4.3.4.3 Basic Method of Successive Approximations

We review a simple numerical algorithm for training (4.26) via solving the PMP (equations

(4.29), (4.30), (4.31), (4.32), (4.33)). Among many algorithms (cf. the survey [Rao09]),

we present the method of successive approximations (MSA) [CL82], which is an iterative

method based on alternating propagation and optimization steps, known to scale well to

modern deep learning problems with huge number of state and control variables [Li+17].

Note that (4.29) is simply the state equation

ẋ
⇤(t) = f(x⇤(t), ✓⇤(t), t)

which is independent of the function p
⇤. Hence, the algorithm presented by Li et al.

[Li+17] proceeds in the following way. First, we make an initial guess of the optimal

control ✓0 2 U . For each k = 0, 1, 2, ..., we solve (4.29)

ẋ
✓
k
(t) = f(x✓

k
(t), ✓k(t), t), x

✓
k
(t0) = x0

for x✓
k
, which in turn allows us to solve (4.30)

ṗ
✓
k
(t) = �

@H

@x
(x✓

k
(t),p✓

k
(t), ✓k(t), t), p

✓
k
(tN) = �

@L

@x
(x✓

k
(tN))

to get p✓
k
. Finally, using the maximization condition (4.32), we can update

✓k+1(t) = argmax
✓2⇥

H(x✓
k
(t),p✓

k
(t), ✓, t)

4.4 Neural Ordinary Di↵erential Equations: Continuous Backpropagation 49

Algorithm 1 Basic MSA, [Li+17, Algorithm 1]

1: Initialize: ✓0 2 U

2: for k = 0 to #Iterations do

3: Solve ẋ
✓
k
(t) = f(x✓

k
(t), ✓k(t), t), x

✓
k
(t0) = x0

4: Solve ṗ
✓
k
(t) = �

@H

@x (x
✓
k
(t),p✓

k
(t), ✓k(t), t), p

✓
k
(tN) = �

@L

@x (x
✓
k
(tN))

5: Set ✓k+1(t) = argmax✓2⇥ H(x✓
k
(t),p✓

k
(t), ✓, t) for each t 2 [t0, tN]

6: end for

for t 2 [t0, tN]. This procedure is summarized in algorithm (1).

Like for the PMP, the two main components of MSA are the forward-backward Hamilto-

nian dynamics and the maximization for the optimal parameters at each time. Note that

the Hamiltonian maximization step in MSA is decoupled for each t 2 [t0, tN]. From the

viewpoint of deep learning, the optimization step is decoupled for di↵erent network layers

and only the Hamiltonian ODEs, i.e. steps 3, 4 of algorithm (1), involve propagation

through the layers. This enables the parallelization of the maximization step, which is

usually the most time-consuming step [Li+17].

However, as was shown by Aleksandrov et al. [Ale68], the basic MSA converges for a

restricted class of linear quadratic regularization terms, but in general it tends to diverge,

particularly when a bad initial ✓0 is chosen. Rather than modifying the basic MSA

to control its divergent behavior, we will follow the approach presented by Chen et al.

[Che+18], who take the crucial step on deriving the maximum principle by not regularizing

the network, i.e. not considering the second part of the cost functional in the control

problem (4.26), but only considering the terminal cost (loss) function. In the optimal

control literature this is known as the Mayer problem [Lib12, p. 87].

4.4 Neural Ordinary Di↵erential Equations: Continuous Back-

propagation

The most recent (continuous) dynamical systems approach to machine learning presented

by Chen et al. [Che+18] considers optimizing the following control problem when finding

e�cient schemes for training Neural ODEs:

min
✓2U

L(x(tN))

ẋ(t) = f(x(t), ✓, t), x(t0) = x0, t0 t tN .
(4.34)

50 4 NEURAL ORDINARY DIFFERENTIAL EQUATIONS

Note that this optimization problem is formulated in accordance with the simplifications

of the section (4.2). We have summarized the control problems considered throughout

chapter (4) in table (1).

Cost functional Corresponding Control Problem

General cost functional

min
✓2U

L(x(tN), tN) +

Z
tN

t0

R(x(t), ✓(t), t)dt

ẋ(t) = f(x(t), ✓(t), t), x(t0) = x0, t0 t tN

(4.26)

No terminal cost term L

min
✓2U

Z
tN

t0

R(x(t), ✓(t))dt

ẋ(t) = f(x(t), ✓(t)), x(t0) = x0, t0 t tN

(4.9)

No regularization term R

min
✓2U

L(x(tN))

ẋ(t) = f(x(t), ✓, t), x(t0) = x0, t0 t tN
(4.34)

Table 1: Versions of the cost functional and the corresponding control problem. Note that

control problem (4.5) is also contained in the first control problem (4.26) as a special case,

with its cost functional including both the terminal cost and the regularization term.

In order to give the necessary optimality conditions for control problem (4.34), Chen et

al. [Che+18] start by defining a function

p(t) =
@L

@x
(x(t))

for the costate vector p (cf. equation (4.25) of theorem (4.7)). Since we are not consid-

ering the regularization term in the cost functional of (4.34), that is, R(x, ✓, t) ⌘ 0, the

Hamiltonian corresponding to problem (4.7) is

H(x,p, ✓, t) = hp, f(x, ✓, t)i.

4.4 Neural Ordinary Di↵erential Equations: Continuous Backpropagation 51

Then, from the optimal control theory, we should expect that the dynamics of the function

p(t) are given by the following di↵erential equation:

ṗ(t) = �
@H

@x
(x(t),p(t), ✓, t) = �

✓
@f

@x
(x(t), ✓, t)

◆0

p(t). (4.35)

Chen et al. [Che+18] present the most succinct proof to (4.35) by noting that the costate

vector is the gradient of the loss function with respect to the hidden state at a specified

time t, and that in standard neural networks, the gradient of a hidden layer xt depends

on the gradient from the next layer xt+1 by chain rule

@L

@xt

=

✓
@xt+1

@xt

◆0 @L

@xt+1
.

Now, the transformation after an ✏ change in time for a continuous hidden state can be

written as

x(t+ ✏) = x(t) +

Z
t+✏

t

f(x(t), ✓, t)dt = T✏(x(t), t)

and then by applying the chain rule

@L

@x(t)
=

✓
@x(t+ ✏)

@x(t)

◆0 @L

@x(t+ ✏)
or p(t) =

✓
@T✏

@x
(x(t), t)

◆0

p(t+ ✏). (4.36)

Then the proof of (4.35) below follows simply from the definition of the derivative and

equation (4.36) on the first line, and Taylor series around x(t) on the second line

ṗ(t) = lim
✏!0+

p(t+ ✏)� p(t)

✏
= lim

✏!0+

p(t+ ✏)�
�
@T✏
@x (x(t), t)

�0
p(t+ ✏)

✏

= lim
✏!0+

p(t+ ✏)�
⇥

@

@x(x(t) + ✏f(x(t), ✓, t) +O(✏2))
⇤0
p(t+ ✏)

✏

= lim
✏!0+

p(t+ ✏)�
�
I + ✏@f

@x(x(t), ✓, t) +O(✏2)
�0
p(t+ ✏)

✏

= lim
✏!0+

�✏
�
@f

@x(x(t), ✓, t)
�0
p(t+ ✏) +O(✏2)

✏

= lim
✏!0+

�

✓
@f

@x
(x(t), ✓, t)

◆0

p(t+ ✏) +O(✏) = �

✓
@f

@x
(x(t), ✓, t)

◆0

p(t).

Equation (4.36) pinpoints the similarity between the PMP and backpropagation. Hence,

similarly to backpropagation, the ODE for the costate function p(t) needs to be solved

backwards in time. By specifying the constraint on the terminal time point, which is

simply the gradient of the loss function with respect to the terminal state, we can obtain

52 4 NEURAL ORDINARY DIFFERENTIAL EQUATIONS

the gradients with respect to the hidden state at any time, including the initial state

p(tN) =
@L

@x
(x(tN))

p(t0) = p(tN) +

Z
t0

tN

ṗ(t)dt = p(tN)�

Z
t0

tN

✓
@f

@x
(x(t), ✓, t)

◆0

p(t)dt.
(4.37)

Throughout it was assumed that the loss function L depends only on the last time point

tN . If function L depends also on intermediate time points t1, t2, ..., tN�1, the procedure

(4.37) can be applied for each of the intervals [tN�1, tN], [tN�2, tN�1] in the backward order

and then the obtained gradients are summed up [Che+18].

4.4.1 Gradients with respect to ✓ and t

Chen et al. [Che+18] generalize (4.35) to obtain gradients of the loss function with

respect to ✓, and the initial and end times, t0 and tN .13 Since they do not assume

direct dependence of ✓ on t, they formulate the variables ✓ and t as states with constant

di↵erential equations

@✓(t)

@t
= 0,

dt(t)

dt
= 1.

Then they adjoin these additional states to the state x to form an augmented state with

corresponding di↵erential equation and costate function

d

dt

2

664

x

✓

t

3

775 (t) = faug([x, ✓, t]) :=

2

664

f([x, ✓, t])

0

1

3

775

paug :=

2

664

p

p✓

pt

3

775 ,p✓(t) :=
@L

@✓(t)
,pt(t) :=

@L

@t(t)
.

(4.38)

The augmented ODE formulated in this way is as an autonomous (time-invariant) ODE,

but the derivations of the previous section (4.4) are again true since this is a special case

of a time-variant ODE [Che+18]. The Jacobian matrix of f has the form

@faug
@[x, ✓, t]

=

2

664

�
@f

@x

�0 �
@f

@✓

�0 �
@f

@t

�0

0 0 0

0 0 0

3

775 (t). (4.39)

13Note that L does not depend on ✓, t0 and tN directly but through the trajectory x(t) that the control

✓ generates. Hence, all derivatives appearing in subsequent derivations are assumed to exist.

4.4 Neural Ordinary Di↵erential Equations: Continuous Backpropagation 53

Plugging this into (4.35) gives

˙paug(t) = �

✓
@faug

@[x, ✓, t]
(t)

◆0 h
p(t) p✓(t) pt(t)

i0
= �

h�
@f

@x

�0
p

�
@f

@✓

�0
p

�
@f

@t

�0
p

i0
(t).

Note that the first element is the di↵erential equation (4.35), as expected. Then, Chen

et al. [Che+18] use the second element (cf. condition ii) in theorem (4.10)) to obtain

the gradient of the loss with respect to the parameters ✓, by setting p✓(tN) = 0 and

integrating over the full interval

@L

@✓
= p✓(t0) = �

Z
t0

tN

✓
@f

@✓
(x(t), ✓, t)

◆0

p(t)dt. (4.40)

Finally, they also get gradients with respect to t0 and tN

@L

@tN
= f(x(tN), ✓, tN)

0
p(tN),

@L

@t0
= pt(tN)�

Z
t0

tN

✓
@f

@t
(x(t), ✓, t)

◆0

p(t)dt. (4.41)

Equations (4.35), (4.37), (4.40) and (4.41) give the gradients of the loss with respect to

all possible inputs to an ODE solver, without backpropagating through the operations of

the solver. These results are summarized in algorithm (2). Not storing any intermediate

quantities of the forward pass allows us to train models with constant memory cost as a

function of depth, a major bottleneck of training deep models [Che+18].

Algorithm 2 Complete reverse-mode derivative of an ODE initial value problem,

[Che+18, Algorithm 2]

Input: dynamics parameters ✓, start time t0, stop time t1, final state x(t1), terminal cost

gradient @L

@x (x(t1))

1: @L

@t1
= f(x(t1), ✓, t1)0

@L

@x (x(t1))

2: s0 =
h
x(t1),

@L

@x (x(t1)),0|✓|,�
@L

@t1

i
. Define initial augmented state

3: def aug dynamics([x(t),p(t), ·, ·], ✓, t): . Define dynamics on augmented state

4: return

h
f(x(t), ✓, t),�

�
@f

@x

�0
p(t),�

�
@f

@✓

�0
p(t),�

�
@f

@t

�0
p(t)

i
. Compute vector-

Jacobian products

5:

h
x(t0),

@L

@x (x(t0)),
@L

@✓
, @L

@t0

i
= ODESolve(s0, aug dynamics, t1, t0, ✓) . Solve reverse-

time ODE

return
@L

@x (x(t0)),
@L

@✓
, @L

@t0
, @L

@t1

54 4 NEURAL ORDINARY DIFFERENTIAL EQUATIONS

4.5 Approximation limitations of Neural Ordinary Di↵erential

Equations

So far we have studied the optimal control theory to find optimization methods that can

successfully train continuous-depth models. We tried to draw concise mathematical links

between such models and optimal control theory, and this approach was finalized with

the application of the maximum principle for training Neural Ordinary Di↵erential Equa-

tions. In this section, we focus on the approximation capabilities of the novel architecture

of Neural ODEs. Dupont et al. [DDT19] were the first to highlight their limitations

in approximation capabilities, which they attribute to the preserving of input topology.

Using tools from ODE theory and basic topology, they find simple classes of functions

which Neural ODEs cannot represent.

Dupont et al. [DDT19] consider the case of no controls14 in the system of ordinary

di↵erential equations which we considered in the previous sections

ẋ(t) = f(x(t), t), x(t0) = x0 (4.42)

To guarantee existence and uniqueness of solutions for (4.42), they weaken the assump-

tions of the previous sections by requiring f to be continuous in t and globally Lipschitz

continuous in x [AA15, Theorem 2.4.5], that is, there exists a constant L � 0 such that

kf(x2(t), t)� f(x1(t), t)k2 L kx2(t)� x1(t)k2

for all t 2 R. Then they define the flow �t associated to the vector field f(x(t), t) as the

solution at time t of the ODE starting from the initial condition x(t0) = x0. The flow

at the final time tN to which the ODE is solved is defined as features �(x0) = �tN (x0).

Finally, the Neural ODE model is defined by applying a linear map L : Rn
! R to the

feature function �. Next Dupont et al. [DDT19] state a useful property of the flow �t.

Lemma 4.11. [You10, Theorem C.7]

For all t 2 [t0, tN],�t : Rn
! Rn is a homeomorphism.

In order for �t to be a homeomorphism, it must be a continuous bijection, whose inverse

��1
t is continuous. The proof that �t and ��1

t are continuous relies on the Gronwall’s

Lemma (see appendix (A.3)). Bijection on the other hand follows from the fact that the

solution of the ODE initial value problem is unique [AA15, Theorem 2.4.5].

14The parameters ✓ are encoded within the function f .

4.5 Approximation limitations of Neural Ordinary Di↵erential Equations 55

Lemma (4.11) implies that �(x0) = �tN (x0) is a homeomorphism as well. Since homeo-

morphims preserve topological properties, then Neural ODEs learn only features which

have the same topology as the input space by continuously deforming the input space and

cannot for instance tear a connected region apart. Concretely, Dupont et al. [DDT19]

construct a simple function g which Neural ODEs cannot represent.

Denote by �(S) = {y 2 Rn : y = �(x),x 2 S} the feature transformation of a set S ⇢ Rn.

Denote by A = {x 2 Rn : kxk2 r1} a sphere and by B = {x 2 Rn : r2 kxk2 r3} an

annulus region in Rn.

Proposition 4.12. [DDT19, Proposition2]

Neural ODEs cannot represent a function g : Rn
! R given by

8
<

:
g(x) = �1 if x 2 A

g(x) = 1 if x 2 B

where A and B are the sphere and the annulus defined above for 0 < r1 < r2 < r3.

Proof. First note that the sphere A in enclosed by the annulus region B. Next assume that

there exist a Neural ODE such that the linear map Lmaps �(A) to �1 and �(B) to +1, i.e.

�(A) and �(B) are linearly separable. Define a diskD ⇢ Rn byD = {x 2 Rn : kxk2 r2}.

Obviously, A ⇢ int(D), A \ @D = ; and @D ⇢ B. Hence, if �(int(D)) and �(@D) are not

linearly separable, then neither are �(A) or �(B).

Since the feature transformation � is a homeomorphism, then �(int(D)) = int(�(D)) and

�(@D) = @(�(D)) [Arm13]. Denote by D = �(D) and assume that int(D) and @D are

linearly separated. That is, there exists a linear function L(x) = w
0
x and a constant C

such that L(x) > C for all x 2 @D, and L(x) < C for all x 2 int(D).

Now, since D is a connected subset of Rn (D is connected and � is a homeomorphism),

then every point x 2 int(D) can be expressed as a convex combination of points on the

boundary @D, that is, any x 2 int(D)

x = �x1 + (1� �)x2

for some x1,x2 2 @D and 0 < � < 1. But,

L(x) = w
0
x = w

0(�x1 + (1� �)x2)

= �w0
x1 + (1� �)w0

x2

� �C + (1� �)C = C,

which means that all points of the interior are on the same side of the hyperplane as

points on the boundary. Thus �(A) and �(B) being linearly separable cannot possibly

hold.

56 4 NEURAL ORDINARY DIFFERENTIAL EQUATIONS

Dupont et al. [DDT19] then experiment with training Neural ODEs to approximate

function g in dimensions 1 and 2. Note that when optimizing Neural ODEs we actually

train on discrete points which are sampled from the continuous regions, and not the whole

region. Hence it is still possible for Neural ODEs to learn good approximations of function

g since the flow could squeeze through the gaps. However, through experiments, they show

that such problems usually lead to ill-posed ODE problems that are numerically expensive

to solve [DDT19].

In order to deal with such ill-posed problems, Dupont et al. [DDT19] introduce Aug-

mented Neural ODEs (ANODEs), as a straightforward extension of Neural ODEs. They

instead augment the learning space and solve the ODE from Rn to Rn+p, which allows

the ODE flow to lift points into the additional dimensions such that linear separability

is easily satisfied. Concretely, by denoting a(t) 2 Rp a point in the augmented part of

space, they formulate the augmented ODE problem in the following way:

d

dt

"
x(t)

a(t)

#
(t) = f(

"
x(t)

a(t)

#
, t),

"
x(t0)

a(t0)

#
=

"
x0

0

#
.

Dupont et al. [DDT19] achieve lower losses, lower computational cost and better gener-

alization than the regular Neural ODEs, both on learning the previous function g and on

image datasets such as MNIST [LeC98] and CIFAR-10 [KNH10]. Their experiments fol-

low the architecture proposed by Chen et al. [Che+18] of modelling f as a CNN [LKF10]

or an MLP [Pin99] with weights that are not a function of time, and instead the time

dependency is encoded by passing a concatenated tensor (x(t), t) as input to the network.

57

5 Stability of Neural Ordinary Di↵erential Equations

In this chapter we start by highlighting the inconsistency of neural networks theoretically,

then we discuss the robustness of the Neural ODE model when compared to other con-

ventional neural network architectures such as CNNs.

In the first section (5.1), we review studies on the phenomenon of adversarial examples

for neural networks. Despite the success of deep neural networks in image classification,

an observation first made by Szegedy et al. [Sze+13] shows that deep neural networks

exhibit unstable behavior to small changes in the input. In this context, it is possible to

perturb input images in a manner that the changes are indistinguishable for the human

eye, but the label assigned by the network is very di↵erent. This sheds doubt on the

neural network generalization capabilities and the ability to learn the true underlying

concepts that determine the correct output label. Next, in the second section (5.2), we

report the empirical success of various adversarial examples for Neural ODE models. We

examine a property of ODE trajectories which ensures intrinsic regularization in Neural

ODE networks. Finally, in section (5.3), we experiment with adversarial deformations,

achieved by small deformations to the image found through a gradient descent step. We

apply such attacks to Neural ODEs on MNIST and compare our results to CNNs.

5.1 Adversarial Examples

In image classification problems a neural network finds a mapping K : Rn
! {1, · · · , L},

which maps image pixel value vectors to a discrete label set Y containing L integer classes.

An adversarial example for an image classifier K with respect to a correctly classified im-

age x 2 Rn is an image x̃ 2 Rn that is imperceptible from x but is classified di↵erently,

K(x) 6= K(x̃). Proximity in `p-norm (for 1 p 1) is considered to be a su�cient

substitute for imperceptibility.

Much research has since gone into developing algorithms to construct adversarial exam-

ples (or so-called adversarial attacks) [GSS14], [KGB16], [MFF16], [CW17], [Hua+17],

[Mad+18] and the recent surveys [Pap+16a], [AM18]. These results suggest that classi-

fiers based on deep learning techniques, even those who obtain excellent performance on

the test set, might not have understood concepts in the way humans would. Even though

adversarial examples are very unlikely to occur in practice [Sze+13], [Dhi+18], [Ily+19],

58 5 STABILITY OF NEURAL ORDINARY DIFFERENTIAL EQUATIONS

their existence is very relevant and crucial for deep learning to achieve the maturity to

enter into safety and security critical applications.

5.1.1 Adversarial Perturbations

Szegedy et al. [Sze+13] were the first to highlight the instability of neural networks by

constructing adversarial examples through corruption of training samples with additive

noise. They formulate the problem of finding adversarial examples, or so-called adversarial

perturbations, in form of the following optimization problem:

min krk2

K(x+ r) = l

x+ r 2 [0, 1]n

(5.1)

where x 2 Rn is a given image, whose true label is di↵erent from l. The optimization

problem (5.1) is non-convex and, in general, its exact computation is a hard problem,

because the constraint K(x+ r) = l is highly non-linear. Instead, Szegedy et al. approxi-

mate it by using a box-constrained L-BFGS [LN89] to find the minimum c > 0 for which

the minimizer r⇤ of the following optimization problem satisfies K(x+ r
⇤) = l

min c · krk2 + J(✓,x+ r, l)

x+ r 2 [0, 1]n

where J(✓,x, l) denotes a continuous loss function of a neural network with parameters ✓

evaluated at an input x and a label l.

Based on the ideas of Szegedy et al. [Sze+13], Carlini et al. [CW17] construct adversarial

examples by extending the optimization problem (5.1) for either `0, `2 or `1-norms. Their

aim is to express the optimization problem in a di↵erent form which is better suited for

gradient-based methods that do not support box constraints. To achieve that, they define

an objective function f such that

K(x+ r) = l i↵ f(x+ r) 0. (5.2)

One of the many choices that the authors propose for f is

f(x+ r) = �J(✓,x+ r, l) + 1

where J denotes the cross-entropy loss. For other choices of f and testing the respective

condition (5.2), we refer to the original work [CW17]. Having defined the function f ,

problem (5.1) can alternatively be formulated as

5.1 Adversarial Examples 59

min krk
p
+ c · f(x+ r)

x+ r 2 [0, 1]n
(5.3)

where c > 0 is a suitable chosen constant. Carlini et al. use three methods, namely:

projected gradient descent, clipped gradient descent and change of variables to avoid the

box constraints in problem (5.3). Then they use the Adam optimizer [KB14] to find ad-

versarial examples which are very successful even on distilled neural networks [Pap+16b]

(i.e. neural networks that have undergone defensive distillation strategy to increase their

robustness towards adversarial examples which were reported in literature prior to the

work of Carlini et al. [CW17]).

Note that until now we considered targeted adversarial examples, that is, given an input

image x 2 Rn and a target l 2 Y di↵erent from the true label, such attacks try to find

an image x̃ 2 Rn such that K(x̃) = l while x and x̃ are close according to `p-norm

distance. Another method of constructing adversarial examples discussed in literature is

via untargeted adversarial examples, whose objective is to construct an image x̃ 2 Rn

such that K(x) 6= K(x̃) and x, x̃ are close.

5.1.2 Fast Gradient Sign Method

Goodfellow et al. [GSS14] propose the fast gradient sign method (FGSM) to compute

adversarial examples when maximizing the di↵erence between the classifier’s output with

a fixed `1-norm. We note that this method supports both targeted adversarial exam-

ples and untargeted ones. First, they linearize the cost function J around the value of

parameters ✓ and formulate the problem of finding adversarial examples as

r = argmax
krk1<✏

J(✓,x+ r, t) (5.4)

for an image x of true label t and an ✏ > 0 which controls the magnitude of the per-

turbation. Then they use a first order approximation for the non-convex problem (5.4)

[GSS14]

r = argmax
krk1<✏

J(✓,x, t) + r
0
rxJ(✓,x, t) = argmax

krk1<✏

r
0
rxJ(✓,x, t)

which gives the maximal perturbation

r = ✏ sign(rxJ(✓,x, t)).

60 5 STABILITY OF NEURAL ORDINARY DIFFERENTIAL EQUATIONS

In case of a targeted attack, FGSM performs a single gradient descent step

x̃ = x� ✏ sign(rxJ(✓,x, l)).

We must note that FGSM was primarily designed to be fast since the gradientrxJ(✓,x, t)

can be e�ciently computed via backpropagation. As for optimality, FGSM is not meant

to always produce the minimal adversarial perturbations. Among many conclusions in

[GSS14] is also the non-uniqueness of adversarial examples, that is, an example generated

for one model is often misclassified by other models, even when they have di↵erent ar-

chitectures or were trained on disjoint training sets. They attribute this property to the

classifiers being of linear nature.

5.1.3 Projected Gradient Descent

As a straightforward extension of FGSM, Kurakin et al. [KGB16] propose projected

gradient descent (PGD). This more powerful, multi-step approach applies FGSM multiple

times with smaller step size ↵, and clips pixel values of intermediate results after each

step to ensure they are in an ✏-`1-neighbourhood of the original image [Mad+18]

x̃0 = x, x̃n+1 = Clip
B1

✏ (x){x̃n + ↵ sign(rxJ(✓,x, t))}

where

�
Clip

B1
✏ (x){x̃}

�
i
=

8
>>><

>>>:

xi � ✏ for x̃i < xi � ✏

xi + ✏ for x̃i > xi + ✏

x̃i otherwise

for every i 2 [n]. PGD was found to show more promising results than FGSM [KGB16].

5.1.4 DeepFool

DeepFool [MFF16] is an untargeted attack technique (which can be easily modified for

the targeted setting) developed by Dezfooli et al. with the aim of finding an e�cient

yet accurate algorithm for searching minimum perturbations with respect to the `p-norm

(1 p 1). For simplicity, we will discuss the algorithm for the case p = 2.

Dezfooli et al. [MFF16] develop the algorithm by imagining that neural networks are

totally linear, with a hyperplane separating each class from another. From this, they con-

struct adversarial perturbations as the orthogonal projection onto the closest hyperplane.

5.1 Adversarial Examples 61

Then, since neural networks are not actually linear, they propose an iterative procedure

where on each step the orthogonal projection onto the first-order approximation of these

hyperplanes is computed.

For some space of images X let F = (F1, · · · , FL) : X ! RL be the underlying model for

the classifier K : X ! {1, · · · , L}, such that

K(x) = argmax
k2[L]

Fk(x).

If we fix an image x 2 X of true label t, a target label l, and set fl := Fl � Ft, then our

goal is to find a small perturbation r 2 X such that fl(x + r) � 0. Assuming that F is

di↵erentiable at x, we can approximate fl around x with

fl(x+ r) ⇡ fl(x) + r
0
rfl(x).

Assuming rfl(x) 6= 0, then the orthogonal projection onto the hyperplane {x : fl(x) = 0}

is given by

r = �
fl(x)

krfl(x)k22
rfl(x). (5.5)

We note that such an r satisfies r0rfl(x) = �fl(x). Hence, for r 2 X given by (5.5) such

that krk2 = fl(x)/krfl(x)k2 is small enough we have

fl(x+ r) ⇡ 0.

This means that the classifier K has approximately equal confidence for the perturbed

image x+ r to have either label t or l.

The DeepFool algorithm [MFF16] then is formulated in the iterative fashion

x0 := x, xn = x+ r1 + ...+ rn

for r’s updated according to (5.5) and in every step the target label is chosen to minimize

the krk2, that is

ln = argmin
k 6=t

|fk(xn�1)|

krfk(xn�1)k
2
2

.

The algorithm terminates if argmaxk Fk(xn) 6= t and outputs x̃ = xn. If it converges to a

point x̃ on a decision boundary hyperplane of F , then the total perturbation r̃ = r1+...+rn

is multiplied by a constant 1 + ⌘, so that the final image x̃ = x+ (1 + ⌘)r̃ is moved away

62 5 STABILITY OF NEURAL ORDINARY DIFFERENTIAL EQUATIONS

from the decision boundary hyperplane.

In [MFF16], DeepFool shows superior results to FGSM [GSS14] when finding minimal

perturbations (the average perturbation obtained using DeepFool is as much as 5 times

lower than the one estimated with FGSM), which makes DeepFool more accurate in

detecting directions that can potentially fool neural networks. However, the authors note

that the algorithm operates in a greedy way and is not guaranteed to converge to the

minimal perturbation. Furthermore, the DeepFool algorithm does not impose any box

constraints which may result in a perturbed image of invalid pixel values, as opposed to

FGSM or PGD who overcome this with constrained search of perturbations. In the next

section we will see a more recent approach of deformation attacks introduced by Alaifari

et al. [AAG18] which naturally overcomes this problem.

5.1.5 Adversarial Deformations

Alaifari et al. [AAG18] extend the DeepFool algorithm by proposing the ADef algorithm,

which instead of using an additive perturbation iteratively deforms an input image using

gradient descent steps.

Considering an input image ⇠ : [0, 1]2 ! Rc (with c = 1 or c = 3 for grayscale or

color images), Alaifari et al. [AAG18] model a deformation with respect to a vector field

⌧ : [0, 1]2 ! R2 as

⇠⌧ (u) = ⇠(u+ ⌧(u)), 8u 2 [0, 1]2

where ⇠ is set to zero outside of [0, 1]2. This transformation embeds as special cases many

other image transformations. For instance, translations are deformations with respect to

the constant vector field ⌧ = v 2 R. The deformation ⇠ � ⇠⌧ is not small in general

in `p norm even if the two images look visually indistinguishable [AAG18]. This ques-

tions the construction of adversarial examples and the design of defense strategies which

has been conducted so far in the context of small additive noise r measured in the `p-norm.

Alaifari et al. [AAG18] consider the discrete setting where the deformations are imple-

mented in the following way. An image x in some space of images X , is represented as a

function ⇠ : [0, 1]2 ! Rc which is evaluated on a regular grid {1/(W+1), ...,W/(W+1)}2 ✓

[0, 1]2. Such a function ⇠ can be obtained by interpolation from x, that is

xk,i,j = ⇠k(i/(W + 1), j/(W + 1))

5.1 Adversarial Examples 63

for k 2 [c]; i, j 2 [W]. Further, ⌧ : [0, 1]2 ! R2 is evaluated on the same grid. For

simplicity, only vector fields that do not move points on the grid {1, ...,W}
2 outside of

[1,W]2 are considered

T := {⌧ : {1, ...,W}
2
! R2

| ⌧(i, j) + (i, j) 2 [1,W]2, 8i, j 2 [W]}.

The deformation of x with respect to ⌧ is defined as

x
⌧

k
= ⇠k �

✓
Id + ⌧

W + 1

◆
or x

⌧

k,i,j
= ⇠k

✓
(i, j) + ⌧(i, j)

W + 1

◆
(5.6)

for k 2 [c]; i, j 2 [W]. The following T -norm is used as a proxy to capture the visual

di↵erence between the original and the deformed image

k⌧kT := max
i,j2[W]

k⌧(i, j)k2.

Similarly to section (5.1.4), for a given image x in some space of images X , with true

label t and target label l 2 [L], we define the function fl = Fl � Ft : X ! R. Assuming

that x does not lie on a decision boundary hyperplane, then fl(x) < 0. Next, define a

function g : T ! R, ⌧ 7! fl(x⌧). Note that,

g(0) = fl(x) < 0.

Alaifari et al. [AAG18] seek to find a small vector field ⌧ 2 T such that g(⌧) � 0. For

that, they use a linear approximation of g in a neighbourhood of 0 as

g(⌧) ⇡ g(0) + (D0g)⌧

where D0g : T ! R is the derivative of g evaluated at ⌧ = 0. Hence, if ⌧ is small in

the T -norm and it satisfies (D0g)⌧ = �g(0), then classifier K has approximately equal

confidence for the deformed image x⌧ to have either label t or l. The authors then employ

least-squares to solve the equation

(D0g)⌧ = �g(0) (5.7)

whose solution is given by [AAG18]

⌧ = �
fl(x)P

W

i,j=1 |D0g(i, j)|2
D0g (5.8)

where D0g is the discrete vector field given by

D0g(i, j) =
1

W + 1

cX

k=1

(rfl(x))k,i,j ·r⇠k

✓
(i, j)

W + 1

◆
.

64 5 STABILITY OF NEURAL ORDINARY DIFFERENTIAL EQUATIONS

Finally, the deformed image x⌧
2 X is defined using equation (5.6). Moreover, Alaifari et

al. [AAG18] impose some degree of smoothness on the deforming vector field. For this,

they search in the range of a smoothing operator S : T ! T . Concretely, they apply a

componentwise two-dimensional Gaussian filter (of any standard deviation) to the entries

of D0g in equation (5.8). The new vector field will again satisfy equation (5.7) since S is

self-adjoint. This results in a smooth deformation of the image x. For a rigorous deriva-

tion of the model we refer to [Gau17].

As in DeepFool [MFF16], the ADef algorithm iterates the deformation process by setting

x0 := x, xn = xn�1 � (Id + ⌧n)

where for n � 1, the vector field ⌧n is given by (5.8) for xn�1. At every step the target

label l is chosen among a candidate set of m labels according to

ln = argmin
k2[m]

k⌧kkT .

The algorithm terminates when the deformed image is misclassified and outputs x̃ = xn.

The iteration also terminates if x̃ lies on a decision boundary hyperplane of K, in which

case the total deforming vector field is approximated by r̃ = r1 + ... + rn and then mul-

tiplied by a constant 1 + ⌘ so that the final image x̃ = x � (Id + (1 + ⌘)r̃) is moved away

from the decision boundary hyperplane.

Interestingly, the ADef algorithm [AAG18] concentrates the deforming vector field ⌧ on

the edges of the image x, due to ⌧ taking small values wherever ⇠ has a small derivative,

provided that rf is moderate. Further, the result of a deformation is always an image

of valid pixel values as opposed to DeepFool. The adversarial deformations of Alaifari

et al. [AAG18] fool convolutional neural networks [LKF10] on MNIST [LeC98] and a

pre-trained Inception-v3 (or Resnet-101) [Sze+16], [He+16a] on ImageNet [Rus+15] with

very high success rate.

5.2 On Robustness of Neural Ordinary Di↵erential Equations

So far in chapter (5) we have examined theoretically the inconsistency of neural networks

in general. We presented several attack strategies for fooling neural networks, grouped

into two general categories: adversarial perturbations and adversarial deformations. In

this section we review empirical and theoretical results on robustness of Neural ODEs

[Che+18] for image classification tasks with respect to adversarial perturbations. The

5.2 On Robustness of Neural Ordinary Di↵erential Equations 65

results of this section and the next section (5.3) on generalization of Neural ODEs are a

continuity of optimization perspectives and approximation capabilities of Neural ODEs

which we studied earlier in chapter (4). Concretely, we report the results of Yan et al.

[Yan+19], who expose Neural ODEs to inputs of various types of perturbations and then

measure the sensitivity of the corresponding outputs.

Yan et al. [Yan+19] experiment with random Gaussian perturbations [Sze+13], FGSM

adversarial examples [GSS14] and PGD adversarial examples [Mad+18]. First, such meth-

ods are examined on Neural ODE [Che+18] and CNN [LKF10] models trained only on

original, non-perturbed images, and their success is defined as a percentage of perturbed

images, whose original image is correctly classified. In order to have a fair comparison,

they experiment with Neural ODEs and CNNs which share the same architecture, with

the exception of the former model containing an additional channel which represents the

time t. This in turn implies that the number of parameters in each model is close to each

other. In this setting, Yan et al. [Yan+19] achieve superior robustness of Neural ODEs

when compared to CNNs both on MNIST [LeC98], a subset of ImageNet [Rus+15] and

SVHN [Net+11] datasets.

In the second setting, Yan et al. [Yan+19] train independent copies of the networks

using the adversarial training procedure proposed by Madry et al. [Mad+18]. That is,

input images are perturbed with random Gaussian noise before each step of the training

process. Training a model on original images together with their perturbed versions

provides increased robustness against adversarial perturbations. This training technique

builds on the ideas of Goodfellow et al. [GSS14], who hypothesise a linear behavior of

neural networks. By noting that linear models cannot be constant near the input samples

and at the same time assign di↵erent labels to di↵erent inputs, Goodfellow et al. [GSS14]

point the need to tweak the training rather than the architecture of neural networks for

better robustness. As a defence strategy against adversarial perturbations, they propose

training based on the following loss

J̃(✓,x, t) = ↵J(✓,x, t) + (1� ↵)J(✓,x+ ✏ sign(rxJ(✓,x, t)), t)

for ↵ 2 (0, 1). We note that, in general, this procedure is computationally expensive.

Moreover, there is a trade-o↵ between the adversarial robustness and the accuracy on

original non-perturbed images [YGZ18], [Tsi+18].

However, considering the fact Gaussian noise is usually assumed to be present in images

and synthesizing it is computationally easy, Yan et al. [Yan+19] perturb the original

66 5 STABILITY OF NEURAL ORDINARY DIFFERENTIAL EQUATIONS

images with Gaussian noise. Next, they follow the adversarial training procedure both on

Neural ODE and CNN models. Again, Neural ODEs show by far more robustness than

the counterpart of CNNs. These observations are probably one step further to strengthen

the conjecture of Goodfellow et al. [GSS14], who propose designing more powerful opti-

mization methods that are able to train models whose behavior is more locally stable.

Finally, Yan et al. [Yan+19] provide an intuitive understanding of the robustness of

Neural ODEs based on the following theorem from ODE theory.

Theorem 5.1 (ODE trajectories do not intersect). [You10, Proposition C.6]

Let x1(t) and x2(t) be two solutions of the system of ordinary di↵erential equations

ẋ(t) = f(x(t), t), x(t0) = x0 (5.9)

with di↵erent initial conditions x1(t0) 6= x2(t0). Then, for all t 2 [0,1), x1(t) 6= x2(t).

For simplicity, Yan et al. [Yan+19] demonstrate theorem (5.1) in the 1-dimensional case.

Denote by xi(t) the solution of equation (5.9) starting from some point Ai = (t0, xi(t0))

for i 2 [3] and assume that A1 is between A2 and A3. Theorem (5.1) implies that the

trajectory x1(t) lies always between the trajectories x2(t) and x3(t).

Next, let ✏ < min{|x2(t0) � x1(t0)|, |x3(t0) � x1(t0)|} and denote by x̃1(t) a solution of

equation (5.9) starting from the point Ã1 = (t0, x̃1(t0)), which is in an ✏-neighbourhood

of A1 with |x̃1(t0)� x1(t0)| < ✏. Applying theorem (5.1) gives

|x̃1(tN)� x1(tN)| |x3(tN)� x2(tN)|.

For Neural ODEs this means that if a correctly classified input image is slightly perturbed,

the trajectory associated to its perturbed version would not change too much from the

original image. Therefore, the perturbed input could still be correctly classified. For a

CNN model on the other hand there is no such bound on the deviation from the original

output [Yan+19]. In other words, there exists intrinsic robustness regularization in Neural

ODE networks, which is not present for CNN networks.

5.3 Adversarial Deformations for Neural Ordinary Di↵erential

Equations

In this section, we experiment with adversarial deformations [AAG18] for classification

tasks which have undergone Neural ODE architecture for training [Che+18]. We report,

for the first time, the ADef success rate for Neural ODE networks trained on original,

non-perturbed images of the MNIST [LeC98] test set.

5.3 Adversarial Deformations for Neural Ordinary Di↵erential Equations 67

5.3.1 Experimental settings

Neural ODEs preserve the dimension of the input, however, in image classification tasks,

we model maps that transform high-dimensional inputs into a categorical output. For

that, the ODE-Net architecture of Chen et al. [Che+18] consists of three key parts.

First, we map a high-dimensional input to a multi-channel feature map. Next, the Neural

ODE serves as the non-linear representation mapping. Finally, the vector consisting of

predictions is generated via applying a fully-connected classifier to the output of the

Neural ODE.

Figure 6: Adversarial deformations for ODE-Net. First row: Original images from the

MNIST test set. Second row: The deformed images.

Concretely, we have considered the following experimental settings:

Dataset: We conduct experiments to evaluate the robustness of ODE-Net models with

respect to adversarial deformations on MNIST test set.

Architecture: The ODE-Net model is a sequential model consisting of four convolutional

layers (two downsampling layers and two feature layers) and one fully-connected layer

68 6 ADef for Neural ODEs

at the end. In practice, Chen et al. [Che+18] propose solving the Neural ODE with

various numerical solvers such as the Euler method and the Runge-Kutta methods. In

our experiments we use the easily-implemented Euler method with step size 0.1. Our

implementation builds on the open-source Neural ODE codes: https://github.com/

rtqichen/torchdiffeq.

Training: We train the model only on original, non-perturbed images. Training the

model on original images together with their deformed version turned out to be compu-

tationally very ine�cient, as opposed to adversarial perturbation training. We wish to

study this phenomenon and experiment with adversarial deformation training in future

work.

Deformations: We use the ADef algorithm, as coded in https://gitlab.math.ethz.

ch/tandrig/ADef, to produce adversarial deformations for the original images, such that

the ODE-Net model misclassifies the deformed images. The algorithm is configured to

produce any label other than the correct label, hence the set of candidate labels includes

all incorrect labels. The algorithm performs smoothing by a Gaussian filter of standard

deviation 1/2, uses bilinear interpolation to obtain intermediate pixel intensities, and ap-

plies an overshoot factor of 1.2 whenever it converges to a decision boundary hyperplane.

In figure (6), we first trained the network using the ODE-Net architecture on MNIST

test set, and then we used the ADef algorithm to find the needed deformations such that

the same network actually misclassifies the deformed handwritten digits. The vector field

corresponding to the deformation is shown on the original image.

5.3.2 ADef success for ODE-Net

We report, for the first time, an ADef success rate (7) of 92.4% for ODE-Net models

trained on original images of the MNIST test set. This shows, once again, superior ro-

bustness results of Neural ODEs compared to CNNs. Indeed, the authors in [AAG18]

achieve a success rate of ADef for conventional CNN models on MNIST which is always

above 95%.

We motivate the interested reader, in presence of su�cient compute power, to train Neural

ODE models with an increased number of epochs for more precision, and whose number

of parameters are close to that of their counterpart CNN models.

https://github.com/rtqichen/torchdiffeq
https://github.com/rtqichen/torchdiffeq
https://gitlab.math.ethz.ch/tandrig/ADef
https://gitlab.math.ethz.ch/tandrig/ADef

5.3 Adversarial Deformations for Neural Ordinary Di↵erential Equations 69

Figure 7: The success rate of ADef for ODE-Net is defined as a percentage of the correctly

classified inputs.

The promising results of this chapter further strengthen the conjecture that Neural ODEs

are more robust towards adversarial attacks in general compared to CNNs. Achieving

good robustness results is of great relevance for Neural ODEs to reach the maturity to

enter into real-life applications.

70

6 Conclusion

In the algorithmic stability section we have analyzed the Tikhonov regularization scheme

as a means to guarantee uniform stability which in turn implies the ability to learn a

function from the given data that generalizes well to unseen cases. Further, we have

given emphasis to function classes represented by neural networks. We have learnt that

shallow neural networks and thus neural networks in general are universal approxima-

tors for di↵erent function classes under minimal assumptions on the activation function

such as non-polynomiality and local essential boundedness. We have observed that, for

certain problems, deep neural networks perform exponentially better over shallow neural

networks, in terms of the number of parameters used.

Considering very deep neural networks and parameterizing the derivative of the hidden

state using a neural network, we have exploited the first context in which deep neural

networks were replaced by continuous dynamical systems. Concretely, we have examined

in details the novel model of Neural Ordinary Di↵erential Equations from the perspectives

of optimization techniques, approximation capabilities and generalization. We have seen

that optimal control theory can be used to obtain optimization algorithms for training

continuous-depth models. With our work we have contributed theoretically to a concise

derivation of the exact variant, amongst many, of the maximum principle for training

continuous-depth models, from which we have obtained the Neural ODE training algo-

rithm as a special case. We have inspected that the property of preserving the input

topology is a key aspect to the approximation limitations of Neural ODEs.

From the section of stability we have learnt that neural networks are very brittle to ad-

versarial attacks. We have contrasted various techniques which are used to fool neural

networks. However, the promising results of chapter (5) show that Neural ODEs are

more robust towards adversarial attacks compared to CNNs. We met our expectations

and strengthened this conjecture by testing adversarial deformations for Neural ODEs

on MNIST. In future work, it would be interesting to prove theoretically what we dis-

covered in the tests, other than simply exploiting the non-intersecting property of ODE

trajectories. Obtaining good robustness results on deep learning architectures is of great

relevance for many real-life applications, especially in safety and security critical systems.

Robustness combined with other desirable properties such as invertibility and parameter

e�ciency show great premises for Neural ODEs to new extensions in practice.

71

A Appendices

A.1 Probability Theory Basics

Lemma A.1 (Hoe↵ding’s inequality). [Hoe63]

Let Z1, ..., Zn be real independent random variables whose values are contained in intervals

[ai, bi] ◆ range [Zi.] Then for every ✏ > 0 it holds that

P
"

nX

i=1

Zi � E [Zi] � ✏

#
 exp

�

2✏2P
n

i=1(ai � bi)2

�
.

Lemma A.2 (McDiarmid’s inequality). [McD89]

Let (Z1, ..., Zn) = Z be a finite sequence of independent random variables, each with values

in Z and ' : Zn
! R a measurable function such that | '(z) � '(z

0
) | ⌫i whenever z

and z
0
only di↵er in the i’th coordinate. Then for every ✏ > 0

P ['(Z)� E ['(Z)] � ✏] exp

�

2✏2P
n

i=1 ⌫
2
i

�
.

A.2 C1
0 ([a, b])

In lemma (3.5) of section (3.1.2) we used the fact that C1
0 ([a, b]) is a complete metric

vector space for any a < b in R. For completeness, we provide a metric and a norm for

which this is true.

Define a metric ⇢ on C1
0 ([a, b]) by

⇢('1,'2) =
1X

n=0

2�n
k'1 � '2kn

1 + k'1 � '2kn

where k'k
n
=
P

n

j=0 supx2[a,b] |'
(j)(x)|. Then, (C1

0 ([a, b]), ⇢) is a complete metric space.

A.3 Gronwall’s Lemma

Theorem A.3 (Gronwall’s inequality). [How98]

Let U ⇢ Rn be an open set. Let f : U ⇥ [t0, tN] ! Rn be a continuous function and let

x1,x2 : [t0, tN] ! U satisfy the systems of ordinary di↵erential equations:

ẋ1(t) = f(x1(t), t), x1(t0) = x0

ẋ2(t) = f(x2(t), t), x2(t0) = x0.

Assume there is a constant L � 0 such that, for all t 2 [t0, tN],

kf(x2(t), t)� f(x1(t), t)k2 L kx2(t)� x1(t)k2 .

72 A APPENDICES

Then, for any t 2 [t0, tN],

kx2(t)� x1(t)k2 eLt kx2 � x1k2 .

REFERENCES 73

References

[Ale68] Vladimir V Aleksandrov. On the accumulation of perturbations in the linear

systems with two coordinates. Vestnik MGU, 3, 1968.

[Sch47] Laurent Schwartz. “Théorie générale des fonctions moyenne-périodiques”. In:

Annals of Mathematics. 1947, pp. 857–929.

[Bel57] Richard Bellman. Dynamic programming. NJ: Univ. Press, Princeton, 1957.

[Kel60] Henry J Kelley. “Gradient theory of optimal flight paths”. In: Ars Journal

30.10 (1960), pp. 947–954.

[VK61] BA Vostretsov and Mikhail Aleksandrovich Kreines. “Approximation of con-

tinuous functions by superpositions of plane waves”. In: Doklady Akademii

Nauk. Vol. 140. 6. Russian Academy of Sciences. 1961, pp. 1237–1240.

[Pon+62] Lev Semenovich Pontryagin et al. The mathematical theory of optimal pro-

cesses. New York, NY: Wiley, 1962. url: http://cds.cern.ch/record/

234445.

[Hoe63] Wassily Hoe↵ding. “Probability Inequalities for Sums of Bounded Random

Variables”. In: Journal of the American Statistical Association 58.301 (Mar.

1963), pp. 13–30.

[AF66] M Athans and PL Falb. Optimal control: An introduction to the theory and

its applications. New York [u.a.]: McGraw-Hill, 1966.

[Ber74] Leonard David Berkovitz.Optimal control theory. Springer Verlag, New York,

NY, 1974.

[CL82] Felix L Chernousko and Alexey A Lyubushin. Method of successive approxi-

mations for solution of optimal control problems. Optimal Control Applica-

tions and Methods 3(2):101-114, 1982.

[RHW86] David E Rumelhart, Geo↵rey E Hinton, and Ronald J Williams. “Learn-

ing representations by back-propagating errors”. In: nature 323.6088 (1986),

pp. 533–536.

[GW88] A Ronald Gallant and Halbert White. “There exists a neural network that

does not make avoidable mistakes”. In: Proc. of the International Conference

on Neural Networks, San Diego. 1988.

http://cds.cern.ch/record/234445
http://cds.cern.ch/record/234445

74 REFERENCES

[Cyb89] George Cybenko. “Approximation by superpositions of a sigmoidal func-

tion”. In: Mathematics of control, signals and systems 2.4 (1989), pp. 303–

314.

[Fun89] Ken-Ichi Funahashi. “On the approximate realization of continuous map-

pings by neural networks”. In: Neural networks 2.3 (1989), pp. 183–192.

[HSW+89] Kurt Hornik, Maxwell Stinchcombe, Halbert White, et al. “Multilayer feed-

forward networks are universal approximators.” In: Neural networks 2.5

(1989), pp. 359–366.

[LN89] DC Liu and J Nocedal. “On the limited memory BFGS method for large

scale optimization”. In: Mathematical Programming 45.3 (1989), pp. 503–

528. doi: 10.1007/BF01589116.

[McD89] Colin McDiarmid. “On the method of bounded di↵erences”. In: Surveys in

combinatorics 141.1 (1989), pp. 148–188.

[Les+93] Moshe Leshno et al. “Multilayer feedforward networks with a nonpolynomial

activation function can approximate any function”. In: Neural networks 6.6

(1993), pp. 861–867.

[Koh+95] Ron Kohavi et al. “A study of cross-validation and bootstrap for accuracy

estimation and model selection”. In: Ijcai. Vol. 14. 2. Montreal, Canada.

1995, pp. 1137–1145.

[BB96] Ralph P Boas and Harold P Boas. A Primer of Real Functions. Cambridge

University Press, 1996.

[DC96] Harris Drucker and Corinna Cortes. “Boosting decision trees”. In: Advances

in neural information processing systems. 1996, pp. 479–485.

[LGM96] GG Lorentz, M von Golitschek, and Y Makovoz. “Constructive Approxi-

mation: Advanced Problems”. In: Grundlehren. Vol. 304. Springer, Berlin.

1996.

[Alo+97] Noga Alon et al. “Scale-sensitive dimensions, uniform convergence, and learn-

ability”. In: Journal of the ACM (JACM) 44.4 (1997), pp. 615–631.

[How98] Ralph Howard. “The Gronwall inequality”. In: (1998). url: http://people.

math.sc.edu/howard/Notes/gronwall.pdf.

[LeC98] Yann LeCun. “The MNIST database of handwritten digits”. In: http://yann.

lecun. com/exdb/mnist/ (1998).

https://doi.org/10.1007/BF01589116
http://people.math.sc.edu/howard/Notes/gronwall.pdf
http://people.math.sc.edu/howard/Notes/gronwall.pdf

REFERENCES 75

[Vap98] Vladimir N Vapnik. Statistical learning theory. New York [u.a.], 1998.

[Mai99] VE Maiorov. “On best approximation by ridge functions”. In: Journal of

Approximation Theory 99.1 (1999), pp. 68–94.

[MP99] Vitaly Maiorov and Allan Pinkus. “Lower bounds for approximation by MLP

neural networks”. In: Neurocomputing 25.1-3 (1999), pp. 81–91.

[Pin99] Allan Pinkus. “Approximation theory of the MLP model in neural networks”.

In: Acta numerica 8 (1999), pp. 143–195.

[BE01] Olivier Bousquet and André Elissee↵. “Algorithmic stability and generaliza-

tion performance”. In: Advances in Neural Information Processing Systems.

2001, pp. 196–202.

[AF03] Robert A Adams and John JF Fournier. Sobolev spaces. Vol. 140. Elsevier,

2003.

[BP07] Alberto Bressan and Benedetto Piccoli. Introduction to mathematical control

theory. Philadelphia: AIMS series on applied mathematics, 2007.

[Rao09] Anil V Rao. “A survey of numerical methods for optimal control”. In: Ad-

vances in the Astronautical Sciences 135.1 (2009), pp. 497–528.

[Bot10] Léon Bottou. “Large-scale machine learning with stochastic gradient de-

scent”. In: Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177–186.

[KNH10] Alex Krizhevsky, Vinod Nair, and Geo↵rey Hinton. “CIFAR-10 (Canadian

Institute for Advanced Research)”. In: (2010). url: http : / / www . cs .

toronto.edu/~kriz/cifar.html.

[LKF10] Yann LeCun, Koray Kavukcuoglu, and Clément Farabet. “Convolutional net-

works and applications in vision”. In: Proceedings of 2010 IEEE international

symposium on circuits and systems. IEEE. 2010, pp. 253–256.

[NH10] Vinod Nair and Geo↵rey E Hinton. “Rectified linear units improve restricted

boltzmann machines”. In: Proceedings of the 27th international conference

on machine learning (ICML-10). 2010, pp. 807–814.

[Sha+10] Shai Shalev-Shwartz et al. “Learnability, stability and uniform convergence”.

In: Journal of Machine Learning Research 11.Oct (2010), pp. 2635–2670.

[You10] Laurent Younes. Shapes and di↵eomorphisms. Vol. 171. Springer, 2010.

[Net+11] Yuval Netzer et al. “Reading digits in natural images with unsupervised

feature learning”. In: (2011).

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html

76 REFERENCES

[Lib12] Daniel Liberzon. Calculus of Variations and Optimal Control Theory: A Con-

cise Introduction. Princeton University Press, 2012. isbn: 978-0-691-15187-8.

[MRT12] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of

Machine Learning. The MIT Press, 2012. isbn: 026201825X, 9780262018258.

[Arm13] Mark Anthony Armstrong. Basic topology. Springer Science & Business Me-

dia, 2013.

[BS13] J Frédéric Bonnans and Alexander Shapiro. Perturbation analysis of opti-

mization problems. Springer Science & Business Media, 2013.

[Sze+13] Christian Szegedy et al. “Intriguing properties of neural networks”. In: arXiv

preprint arXiv:1312.6199 (2013).

[GSS14] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining

and harnessing adversarial examples”. In: arXiv preprint arXiv:1412.6572

(2014).

[KB14] D Kingma and J Ba. “Adam: A method for stochastic optimization”. In:

arXiv preprint arXiv:1412.6980 (2014).

[SB14] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning:

From Theory to Algorithms. New York, NY, USA: Cambridge University

Press, 2014. isbn: 1107057132, 9781107057135.

[AA15] Shair Ahmad and Antonio Ambrosetti. A textbook on ordinary di↵erential

equations. Vol. 88. Springer, 2015.

[Rus+15] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Chal-

lenge”. In: International Journal of Computer Vision (IJCV) 115.3 (2015),

pp. 211–252. doi: 10.1007/s11263-015-0816-y.

[Tel15] Matus Telgarsky. “Representation benefits of deep feedforward networks”.

In: arXiv preprint arXiv:1509.08101 (2015).

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT

press, 2016.

[He+16a] Kaiming He et al. “Deep residual learning for image recognition”. In: Pro-

ceedings of the IEEE conference on computer vision and pattern recognition.

2016, pp. 770–778.

[He+16b] Kaiming He et al. “Identity mappings in deep residual networks”. In: Euro-

pean conference on computer vision. Springer. 2016, pp. 630–645.

https://doi.org/10.1007/s11263-015-0816-y

REFERENCES 77

[KGB16] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. “Adversarial examples

in the physical world”. In: arXiv preprint arXiv:1607.02533 (2016).

[MFF16] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. “Deep-

fool: a simple and accurate method to fool deep neural networks”. In: Pro-

ceedings of the IEEE conference on computer vision and pattern recognition.

2016, pp. 2574–2582.

[Pap+16a] Nicolas Papernot et al. “The limitations of deep learning in adversarial set-

tings”. In: 2016 IEEE European symposium on security and privacy (Eu-

roS&P). IEEE. 2016, pp. 372–387.

[Pap+16b] N Papernot et al. “Distillation as a defense to adversarial perturbations

against deep neural networks”. In: IEEE Symposium on Security and Privacy

(2016).

[Sze+16] Christian Szegedy et al. “Rethinking the inception architecture for computer

vision”. In: Proceedings of the IEEE conference on computer vision and pat-

tern recognition. 2016, pp. 2818–2826.

[Tel16] Matus Telgarsky. “Benefits of depth in neural networks”. In: arXiv preprint

arXiv:1602.04485 (2016).

[CW17] Nicholas Carlini and David Wagner. “Towards evaluating the robustness of

neural networks”. In: 2017 ieee symposium on security and privacy (sp).

IEEE. 2017, pp. 39–57.

[Gau17] Tandri Gauksson. “Adversarial perturbations and deformations for convolu-

tional neural networks”. MA thesis. ETH Zurich, 2017.

[HR17] Eldad Haber and Lars Ruthotto. “Stable architectures for deep neural net-

works”. In: Inverse Problems 34.1 (2017), p. 014004.

[Hua+17] Xiaowei Huang et al. “Safety verification of deep neural networks”. In: Inter-

national Conference on Computer Aided Verification. Springer. 2017, pp. 3–

29.

[Li+17] Qianxiao Li et al. “Maximum principle based algorithms for deep learning”.

In: The Journal of Machine Learning Research 18.1 (2017), pp. 5998–6026.

[Lu+17] Yiping Lu et al. “Beyond finite layer neural networks: Bridging deep architec-

tures and numerical di↵erential equations”. In: arXiv preprint arXiv:1710.10121

(2017).

[Pas+17] Adam Paszke et al. “Automatic di↵erentiation in pytorch”. In: (2017).

78 REFERENCES

[Wei17] E Weinan. “A proposal on machine learning via dynamical systems”. In:

Communications in Mathematics and Statistics 5.1 (2017), pp. 1–11.

[AM18] Naveed Akhtar and Ajmal Mian. “Threat of adversarial attacks on deep

learning in computer vision: A survey”. In: IEEE Access 6 (2018), pp. 14410–

14430.

[AAG18] Rima Alaifari, Giovanni S Alberti, and Tandri Gauksson. “ADef: an iter-

ative algorithm to construct adversarial deformations”. In: arXiv preprint

arXiv:1804.07729 (2018).

[Cas18] Rui Castro. 2di70-statistical learning theory lecture notes. 2018.

[Che+18] Tian Qi Chen et al. “Neural ordinary di↵erential equations”. In: Advances

in neural information processing systems. 2018, pp. 6571–6583.

[Dhi+18] Guneet S Dhillon et al. “Stochastic activation pruning for robust adversarial

defense”. In: arXiv preprint arXiv:1803.01442 (2018).

[Gra+18] Will Grathwohl et al. “Ffjord: Free-form continuous dynamics for scalable

reversible generative models”. In: arXiv preprint arXiv:1810.01367 (2018).

[LJ18] Hongzhou Lin and Stefanie Jegelka. “Resnet with one-neuron hidden layers

is a universal approximator”. In: Advances in Neural Information Processing

Systems. 2018, pp. 6169–6178.

[Mad+18] Aleksander Madry et al. “Towards deep learning models resistant to adver-

sarial attacks”. In: International Conference on Learning Representations

(2018). url: https://openreview.net/forum?id=rJzIBfZAb.

[RH18] Lars Ruthotto and Eldad Haber. “Deep neural networks motivated by partial

di↵erential equations”. In: arXiv preprint arXiv:1804.04272 (2018).

[Tsi+18] Dimitris Tsipras et al. “Robustness may be at odds with accuracy”. In: arXiv

preprint arXiv:1805.12152 (2018).

[Wol18] Michael M Wolf. Mathematical foundations of supervised learning. 2018.

[YGZ18] Ziang Yan, Yiwen Guo, and Changshui Zhang. “Deep defense: Training dnns

with improved adversarial robustness”. In: Advances in Neural Information

Processing Systems. 2018, pp. 419–428.

[DDT19] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. “Augmented neural

odes”. In: arXiv preprint arXiv:1904.01681 (2019).

https://openreview.net/forum?id=rJzIBfZAb

REFERENCES 79

[Ily+19] Andrew Ilyas et al. “Adversarial examples are not bugs, they are features”.

In: arXiv preprint arXiv:1905.02175 (2019).

[Liu+19] Xuanqing Liu et al. “Neural SDE: Stabilizing Neural ODE Networks with

Stochastic Noise”. In: arXiv preprint arXiv:1906.02355 (2019).

[Qua+19] Alessio Quaglino et al. “Accelerating neural odes with spectral elements”.

In: arXiv preprint arXiv:1906.07038 (2019).

[Yan+19] Hanshu Yan et al. “On Robustness of Neural Ordinary Di↵erential Equa-

tions”. In: arXiv preprint arXiv:1910.05513 (2019).

	Introduction
	Basic Learning Theory and Algorithmic Stability
	Statistical framework
	Error decomposition
	Algorithmic stability

	On Neural Networks
	Approximation Theory
	Density in C(X)
	Density in C(K) with discontinuous activation functions

	Exponential Benefits of Depth in Neural Networks

	Neural Ordinary Differential Equations
	From Deep Residual Networks to Neural Ordinary Differential Equations
	Function Approximation by Dynamical Systems
	Optimal Control Theory
	Admissible Controls
	Statement of the Control Problem
	Pontryagin's Minimum Principle
	Pontryagin's Minimum Principle: Change of Variable

	Neural Ordinary Differential Equations: Continuous Backpropagation
	Gradients with respect to and t

	Approximation limitations of Neural Ordinary Differential Equations

	Stability of Neural Ordinary Differential Equations
	Adversarial Examples
	Adversarial Perturbations
	Fast Gradient Sign Method
	Projected Gradient Descent
	DeepFool
	Adversarial Deformations

	On Robustness of Neural Ordinary Differential Equations
	Adversarial Deformations for Neural Ordinary Differential Equations
	Experimental settings
	ADef success for ODE-Net

	Conclusion
	Appendices
	Probability Theory Basics
	C0([a,b])
	Gronwall's Lemma

