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Machine Learning trends

Major breakthrough: (Krizhevsky et al., 2012) win the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) by a large margin using
Deep Convolutional Neural Networks (DCNNs) – AlexNet
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Limitations of Neural Networks
Notoriously opaque inner workings
Only few theoretical results explain their success in practice
In image classification, imperceptibly perturbed input images (ad-
versarial examples) are often classified very differently than the
original image

Figure 1: An adversarial example for a pre-trained Inception-v3 model (Sze-
gedy et al., 2016) produced by ADef (Alaifari et al., 2018).
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Central Question

Should we expect rigorous mathematical analysis of neural networks?

Focus on the interplay of three areas
1 Expressivity of the Network Design

(↪→ Approximation Theory, Applied Harmonic Analysis,...)
2 Learning via Optimal Control

(↪→ Optimization, Optimal Control,...)
3 Generalization

(↪→ Statistics, Learning Theory, Stochastics,...)

The three problems cannot be studied in isolation!
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Density in C(K)

Consider density questions associated with the single hidden layer per-
ceptron model

Σ(σ) = span{σ(w · x− θ) : θ ∈ R, w ∈ Rn}

with activation function σ : R→ R, weights w ∈ Rn and bias θ ∈ R
Find conditions under which Σ(σ) is dense in C(K) for any com-
pact set K ⊂ Rn

Theorem 2.1 (Leshno et al., 1993)

Σ(σ) is dense in C(Rn) iff σ ∈ L∞loc(R) is not a polynomial (a.e.) and
the closure of its points of discontinuity is of zero Lebesgue measure.
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Exponential Benefits of Deep Neural Networks

Denote by F(m, l) ⊆ RR feed-forward neural networks with l layers
each with at most m units, with ReLU activation functions everywhere
but the output

Binarize for classification problems: for each f ∈ F(m, l) define
f̃ := 1f(x)≥1/2 and R̂(f) := 1

|S|
∑

(x,y)∈S 1f̃(x)6=y

Theorem 2.2 (Telgarsky, 2015)

Let k ∈ N, n = 2k and S := ((xi, yi))
n−1
i=0 with xi = i

n , yi = imod 2

There is a f ∈ F(2, 2k) such that R̂(f) = 0.

Ifm, l ∈ N andm < 2
k−3
l
−1 (m is exponentially large) then R̂(h) ≥

1
6 ,∀h ∈ F(m, l).
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Neural Ordinary Differential Equations (Neural ODEs)
(Weinan E, 2017) considers the continuous dynamical systems ap-
proach to deep learning
Residual Networks (ResNets) updates

xt+1 = xt + f(xt, θt)

can be seen as an Euler discretization of a continuous transforma-
tion.
Adding more layers and taking smaller steps, in the limit, the con-
tinuous dynamics of hidden units can be parameterized using an
ODE specified by a neural network

ẋ(t) = f(x(t), θ, t) (1)

1 Given input x0, solve (1) at time tN , get output x(tN )

2 Image classification task: apply a linear map L : Rn → Y to x(tN )
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How to train Neural ODEs?

Find the frameworks and links with mathematics
Deep Network ←→ Differential Equations (DE)

Network Architecture ←→ Numerical DE
Network Training ←→ Optimal Control

Define a loss function L, L is fixed, and consider full-batch training.
Optimization problem for training Neural ODEs

min
θ∈U

L(x(tN ))

ẋ(t) = f(x(t), θ, t), x(t0) = x0, t0 ≤ t ≤ tN
(2)
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Optimal Control Theory

In optimal control theory the following general control problem is con-
sidered

min
θ∈U

L(x(tN ), tN ) +

∫ tN

t0

R(x(t), θ(t), t)dt

ẋ(t) = f(x(t), θ(t), t), x(t0) = x0, t0 ≤ t ≤ tN
(3)

Defining the Hamiltonian H(x, p, θ, t) = p · f(x, θ, t) − R(x, θ, t) for
a costate process p then the Pontryagin’s Maximum Principle (PMP)
gives the necessary conditions for optimal solutions of problem (3).

Shpresim Sadiku ADef for Neural ODEs



Department of Mathematics
Chair of Mathematical Physics Technische Universität München

Optimal Control Theory

In optimal control theory the following general control problem is con-
sidered

min
θ∈U

L(x(tN ), tN ) +

∫ tN

t0

R(x(t), θ(t), t)dt
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Pontryagin’s Maximum Principle (Athans et al., 1966)

Theorem 3.1
Let θ∗(t) be a bounded piecewise continuous function. Then, there
exists a costate process p∗ : [t0, tN ]→ Rn such that the Hamilton’s
equations

ẋ∗(t) = ∂H
∂p (x∗(t), p∗(t), θ∗(t), t), x∗(t0) = x0

ṗ∗(t) = −∂H
∂x (x∗(t), p∗(t), θ∗(t), t), p∗(tN ) = −∂L

∂x
(x∗(tN ))

are satisfied. Moreover, for each t ∈ [t0, tN ], we have the Hamiltonian
maximization condition

H(x∗(t), p∗(t), θ∗(t), t) ≥ H(x∗(t), p∗(t), θ, t)

for all θ ∈ Θ.
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Reverse-mode derivative of an ODE IVP
Problem (2) is a special case of (3), no regularization term R

H(x, p, θ, t) = p · f(x, θ, t)

(Chen et al., 2018) give the gradients of the loss w.r.t. all possible
inputs to an ODE solver

∂L

∂x(t0)
= p(tN )−

∫ t0

tN

(
∂f

∂x
(x(t), θ, t)

)′
p(t)dt

∂L

∂θ
= −

∫ t0

tN

(
∂f

∂θ
(x(t), θ, t)

)′
p(t)dt

∂L

∂tN
= f(x(tN ), θ, tN )′p(tN )

∂L

∂t0
=

∂L

∂tN
−
∫ t0

tN

(
∂f

∂t
(x(t), θ, t)

)′
p(t)dt
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Robustness of Neural ODEs
Expose Neural ODEs to inputs of various types of adversarial at-
tacks, measure the sensitivity of the corresponding outputs
Adversarial perturbations (Szegedy et al., 2013) add Gaussian noise
to inputs

min ‖r‖2
K(x+ r) = l

x+ r ∈ [0, 1]n

Fast Gradient Sign Method (Goodfellow et al., 2014) maximize the
network loss

r = arg max
‖r‖∞≤ε

J(θ, x+ r, t)

DeepFool (Moosavi-Dezfooli et al., 2016), assuming linear separa-
tion, finds minimal perturbations in the `p norm

Shpresim Sadiku ADef for Neural ODEs



Department of Mathematics
Chair of Mathematical Physics Technische Universität München

Robustness of Neural ODEs
Expose Neural ODEs to inputs of various types of adversarial at-
tacks, measure the sensitivity of the corresponding outputs
Adversarial perturbations (Szegedy et al., 2013) add Gaussian noise
to inputs

min ‖r‖2
K(x+ r) = l

x+ r ∈ [0, 1]n

Fast Gradient Sign Method (Goodfellow et al., 2014) maximize the
network loss

r = arg max
‖r‖∞≤ε

J(θ, x+ r, t)

DeepFool (Moosavi-Dezfooli et al., 2016), assuming linear separa-
tion, finds minimal perturbations in the `p norm

Shpresim Sadiku ADef for Neural ODEs



Department of Mathematics
Chair of Mathematical Physics Technische Universität München

Robustness of Neural ODEs
Expose Neural ODEs to inputs of various types of adversarial at-
tacks, measure the sensitivity of the corresponding outputs
Adversarial perturbations (Szegedy et al., 2013) add Gaussian noise
to inputs

min ‖r‖2
K(x+ r) = l

x+ r ∈ [0, 1]n

Fast Gradient Sign Method (Goodfellow et al., 2014) maximize the
network loss

r = arg max
‖r‖∞≤ε

J(θ, x+ r, t)

DeepFool (Moosavi-Dezfooli et al., 2016), assuming linear separa-
tion, finds minimal perturbations in the `p norm

Shpresim Sadiku ADef for Neural ODEs



Department of Mathematics
Chair of Mathematical Physics Technische Universität München

Robustness of Neural ODEs
Expose Neural ODEs to inputs of various types of adversarial at-
tacks, measure the sensitivity of the corresponding outputs
Adversarial perturbations (Szegedy et al., 2013) add Gaussian noise
to inputs

min ‖r‖2
K(x+ r) = l

x+ r ∈ [0, 1]n

Fast Gradient Sign Method (Goodfellow et al., 2014) maximize the
network loss

r = arg max
‖r‖∞≤ε

J(θ, x+ r, t)

DeepFool (Moosavi-Dezfooli et al., 2016), assuming linear separa-
tion, finds minimal perturbations in the `p norm

Shpresim Sadiku ADef for Neural ODEs



Department of Mathematics
Chair of Mathematical Physics Technische Universität München

Robustness of Neural ODEs
Expose Neural ODEs to inputs of various types of adversarial at-
tacks, measure the sensitivity of the corresponding outputs
Adversarial perturbations (Szegedy et al., 2013) add Gaussian noise
to inputs

min ‖r‖2
K(x+ r) = l

x+ r ∈ [0, 1]n

Fast Gradient Sign Method (Goodfellow et al., 2014) maximize the
network loss

r = arg max
‖r‖∞≤ε

J(θ, x+ r, t)

DeepFool (Moosavi-Dezfooli et al., 2016), assuming linear separa-
tion, finds minimal perturbations in the `p norm

Shpresim Sadiku ADef for Neural ODEs



Department of Mathematics
Chair of Mathematical Physics Technische Universität München

Adversarial Deformations

Adversarial deformations - ADef (Alaifari et al., 2018) deform in-
puts w.r.t. vector field τ : [0, 1]2 → R2

xτ (u) = x(u+ τ(u)), ∀u ∈ [0, 1]2

In general, r = x − xτ is unbounded in `p norm even for indistin-
guishable transformations
Size of the deformation is calculated as

‖τ‖T := max
i,j∈W

‖τ(i, j)‖2
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Tests
Superior stability of Neural ODEs over convolutional neural net-
works w.r.t. adversarial perturbations and deformations
Intrinsic regularization in Neural ODEs due to non-intersecting
ODE trajectories

Figure 2: Adversarial deformations for Neural ODEs. First row: Original
images from the MNIST test set. Second row: The deformed images.
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Outcomes

Universality of neural networks within the space of continuous
functions under weak assumptions on the activation function (i.e.,
non-polynomiality and local essential boundedness)
Exponential efficiency of deep neural networks over shallow neural
networks
Optimal Control Theory to exploit the specific structure and train
continuous-depth models of constant memory cost
Stability results of Neural ODEs along with formal verification
promise possible usage in safety and security critical applications
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