CALCULUS FOR DATA SCIENCE

A workshop by Shpresim Sadiku
Institute of Mathematics, Technische Universität Berlin

DS 3
Data Science Summer School

IIIIII Hertie School
Data Science Lab

Lecturer

- Shpresim Sadiku
- sadiku@zib.de
- www.shpresimsadiku.com
- PhD Candidate in Mathematics at TU Berlin
- Scientific Assistant at Zuse Institute Berlin
- Passionate about Artificial Intelligence
- I love to travel and lift weights

Why Data Science?

Self-driving cars and robotics

Typical problems in Data Science

- Image Compression

- Noise Reduction

Natural Language Processing

Google \begin{tabular}{|l|l|l|}
\hline google sed \& a

\hline \& | google seerch |
| :--- |
| google search history |
| googe search by image |
| google search console |
| google search engine | \&

\hline
\end{tabular}

Prerequisites for Data Science

Mathematical background in

- Linear Algebra (August 16)
- Calculus (Today)
- Statistics and Probability Theory (August 18)

Outline

- Variables and Functions
- Limits

■ Derivatives

- Integrals
- Gradient Descent
- Matrix Calculus
- The Hessian
- Least Squares
- Eigenvalues as Optimization
- The Perceptron Algorithm
- Perceptron via gradient descent
- Gradients of a Neural Networks
- Numerical gradient computation
- Backpropagation algorithm
- Chain rule and multivariate chain rule
- Backpropagation through example
- Formalization of backpropagation
- Vanishing gradients
- Choice of nonlinear activation functions
- Automatic differentiation

Numbers

■ Natural numbers - 1, 2, 3, 4, 5...

- Whole numbers - introduce 0 for numbers greater than 9 such as 10, 1000, 1090

■ Integers ..., $-2,-1,0,1,2, \ldots$

- Rational numbers - any number that can be expressed as a fraction $\frac{2}{3}, \frac{687}{100}, 2$
- Note all finite decimals and integers are also rational
- Irrational numbers - cannot be expressed as a fraction $\pi, \sqrt{2}, e$
- Infinite number of decimal digits (3.141592653589793238462...)
- Prove that $\sqrt{2}$ is irrational (!)
- Real numbers - rational and irrational numbers

■ Complex and imaginary numbers - encountered when taking square root of a negative number

- In data science for e.g. matrix decomposition

Order of Operations

1 Parentheses

$$
2 \times \frac{(3+2)^{2}}{5}-4
$$

© Exponents
3 Multiplication
4 Division
■ Addition
б Subtraction

$$
\begin{array}{r}
2 \times \frac{(5)^{2}}{5}-4 \\
2 \times \frac{25}{5}-4 \\
\frac{50}{5}-4 \\
10-4
\end{array}
$$

Variables and Functions

- A variable is a named placeholder for an unspecified or unknown number
- Denoted by α, β, θ
- Can represent any real number, can do math operations with it
- Functions define relationships between two or more variables
- Take input variables, plug them into an expression, and result in an output variable

$$
y=2 x+1 \begin{array}{|ccc|}
\hline \mathrm{x} & 2 \mathrm{x}+1 & \mathrm{y} \\
\cline { 2 - 4 } & \begin{array}{|ccc|}
\hline 0 & 2(0)+1 & 1 \\
\hline 1 & 2(1)+1 & 3 \\
\hline 2 & 2(2)+1 & 5 \\
\hline 3 & 2(3)+1 & 7 \\
\hline
\end{array}
\end{array}
$$

- Can also be expressed as $f(x)=2 x+1$

Continuous Functions

- Making steps of x infinitely small then $y=2 x+1$ is a continuous function
- For every possible value of x there is a value of y

Exercises

- Plot $f(x)=x^{2}+1$
- Plot $f(x, y)=2 x+3 y$

Logarithms

- Logarithm is a math function that finds a power for a specific number and base
- Applications in measuring earthquakes, managing volume on your stereo
- Used in logistic regression
- E.g. $2^{x}=8$ or $x=\log _{2} 8=3$
- In general $a^{x}=b \Longleftrightarrow \log _{a} b=x$
- Default base in earthquake measurements is 10
- Default base in data science and Python is e

Properties

- $\log (a \times b)=\log (a)+\log (b)$
- $\log \left(\frac{a}{b}\right)=\log (a)-\log (b)$
- $\log \left(a^{n}\right)=n \times \log (a)$
- $\log (1)=0$
- $\log \left(x^{-1}\right)=\log \left(\frac{1}{x}\right)=-\log (x)$

Euler's Number e

- e is resulting value of $\left(1+\frac{1}{n}\right)^{n}$ as n gets bigger and bigger

$$
\begin{aligned}
\left(1+\frac{1}{100}\right)^{100} & =2.79481382942 \\
\left(1+\frac{1}{1000}\right)^{1000} & =2.71692393224 \\
\left(1+\frac{1}{10000}\right)^{10000} & =2.71814592682 \\
\left(1+\frac{1}{10000000}\right)^{10000000} & =2.71828169413
\end{aligned}
$$

- As n gets larger it converges approximately on 2.71828 which gives e

Limits

- e - increasing input variable the output keeps approaching a value but never reaches it
- As x increases forever, $f(x)$ gets closer to 0 but never reaches it

$$
\lim _{x \rightarrow \infty} \frac{1}{x}=0
$$

- $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e=2.71828169413$

Derivatives

- Derivative - gives the slope of a function
- Measures the rate of change at any point in a function
- Derivatives are used in ML algorithms, e.g. gradient descent
- When slope is 0 , we are at the minimum or maximum of an output variable
- $f(x)=x^{2}$
- Measure steepness at any point in curve, visualize with a tangent line
■ $x=2$ and $x=2.1$
- $f(x)=4$ and $f(x)=4.41$
- Calculate slope m between two points

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4.41-4.0}{2.1-2.0}=4.1
$$

■ If $x_{2}=2.00001$ then $m=4.00004$ very close to actual slope of 4

Derivatives

- Exponential function like $f(x)=x^{2}$ - derivative will make exponent a multiplier and decrement exponent by 1

$$
\begin{gathered}
\frac{d}{d x} f(x)=\frac{d}{d x} x^{2}=2 x \\
\frac{d}{d x} f(2)=2(2)=4
\end{gathered}
$$

- Use Python library SymPy to calculate derivatives
- Formal definition

$$
f(x)^{\prime}=\lim _{s \rightarrow 0} \frac{(x+s)^{2}-x^{2}}{(x+s)-x}
$$

- $\lim _{s \rightarrow \infty} \frac{(2+s)^{2}-2^{2}}{(2+s)-2}=4$

Partial Derivatives

- Slopes wrt multiple variables in several directions
- For each given variable, assume other variables are constant
- $f(x, y)=2 x^{3}+3 y^{3}$

$$
\begin{aligned}
& \frac{d}{d x} 2 x^{3}+3 y^{3}=6 x^{2} \\
& \frac{d}{d y} 2 x^{3}+3 y^{3}=9 y^{2}
\end{aligned}
$$

- For (x, y) values $(1,2)$, slope wrt x is $6(1)=6$ and wrt y is $9(2)^{2}=36$

■ Forever approaching step size s to 0 but never reaching it (otherwise no line), we converge on a slope of 4

The Chain Rule

$$
y=x^{2}+1, \quad z=y^{3}-2
$$

1 Substitute first function y into second function z

$$
\begin{aligned}
z & =\left(x^{2}+1\right)^{3}-2 \\
\frac{d z}{d x}\left(\left(x^{2}+1\right)^{3}-2\right) & =6 x\left(x^{2}+1\right)^{2}
\end{aligned}
$$

2. Take derivatives of y and z separately, then multiply them

$$
\begin{array}{r}
\frac{d y}{d x}\left(x^{2}+1\right)=2 x \\
\frac{d z}{d y}\left(y^{3}-2\right)=3 y^{1} \\
\frac{d z}{d x}=(2 x)\left(3 y^{2}\right)=6 x y^{2}
\end{array}
$$

- Substitute y

$$
\frac{d z}{d x}=6 x y^{2}=6 x\left(x^{2}+1\right)^{2}
$$

- The chain rule

$$
\frac{d z}{d x}=\frac{d z}{d y} \times \frac{d y}{d x}
$$

Integrals

- Opposite of derivative is integral
- Finds area under the curve for a given range
- Area for a range under a straight line is easy
- $f(x)=2 x$
- Measure area under the line between 2 and 3
- Area of a trapezoid $\frac{(4+6)}{2} \times 1=5$

Integrals

- What if the function is more difficult?
- E.g. $f(x)=x^{2}+1$
- Curviness does not give a clean geometric formula to find the area
- Pack five rectangles of equal length under the curve, where height of each one extends from x-axis to where midpoint touches the curve
- Rectangle area - length \times width
- The more rectangles the better the ap-
 proximation
- Increase/decrease smth toward infinity to approach an actual value

Integral approximation in Python

```
def approximate_integral(a, b, n, f):
    delta_x = (b - a) / n
    total_sum = 0
    for i in range(1, n + 1):
            midpoint = 0.5 * (2 * a + delta_x * (2 * i - 1))
            total_sum += f(midpoint)
    return total_sum * delta_x
def my_function(x):
    return x**2 + 1
area = approximate_integral(a=2, b=3, n=5, f=my_function)
print(area) # prints 7.330000000000002
```

- What happens if we use 1000 rectangles? What about 1000000 ?
- We get more precision - 7.333333250000001 and 7.333333333333075
\hookrightarrow Converging to 7.333 (if a rational number its likely $22 / 3$)
■ Use SymPy to perform integration

Gradient Descent

- Used heavily to solve optimization problems

$$
\min _{x \in \mathcal{X}} f(x)
$$

where the domain \mathcal{X} is a convex set
■ Update rule $x^{t+1}=x^{t}-\tau \nabla f\left(x^{t}\right)$, for a learning rate $\tau>0$

Gradient Descent Exercise

Exercise

Given $f\left(x_{1}, x_{2}\right)=0.5 x_{1}^{2}+x_{2}^{2}+2 x_{1}+x_{2}+\cos (\sin \sqrt{\pi})$

- Compute the minimum $\left(x_{1}^{*}, x_{2}^{*}\right)$ of $\left(x_{1}, x_{2}\right)$ analytically
- Perform two steps of gradient descent on $f\left(x_{1}, x_{2}\right)$ starting from point $\left(x_{1}^{(0)}, x_{2}^{(0)}\right)=$ $(0,0)$ with learning rate $\tau=1$
- Will the gradient descent procedure ever converge to the true minimum $\left(x_{1}^{*}, x_{2}^{*}\right)$?

Solution

and $x^{(2)}$ forever. Decrease learning rate (adaptive step size)

Gradient Descent Exercise

Exercise

Given $f\left(x_{1}, x_{2}\right)=0.5 x_{1}^{2}+x_{2}^{2}+2 x_{1}+x_{2}+\cos (\sin \sqrt{\pi})$

- Compute the minimum $\left(x_{1}^{*}, x_{2}^{*}\right)$ of $\left(x_{1}, x_{2}\right)$ analytically
- Perform two steps of gradient descent on $f\left(x_{1}, x_{2}\right)$ starting from point $\left(x_{1}^{(0)}, x_{2}^{(0)}\right)=$ $(0,0)$ with learning rate $\tau=1$
■ Will the gradient descent procedure ever converge to the true minimum $\left(x_{1}^{*}, x_{2}^{*}\right)$?

Solution

- $\nabla f\left(x_{1}, x_{2}\right)=\left[\begin{array}{c}x_{1}+2 \\ 2 x_{2}+1\end{array}\right] \stackrel{!}{=}\left[\begin{array}{l}0 \\ 0\end{array}\right] \Longrightarrow\left[\begin{array}{l}x_{1}^{*} \\ x_{2}^{*}\end{array}\right]=\left[\begin{array}{c}-2 \\ -1 / 2\end{array}\right]$
- $1^{\text {st }}$ update $\left[\begin{array}{l}x_{1}^{(1)} \\ x_{2}^{(1)}\end{array}\right]=\left[\begin{array}{l}x_{1}^{(0)} \\ x_{2}^{(0)}\end{array}\right]-\tau\left[\begin{array}{c}x_{1}^{(0)}+2 \\ 2 x_{2}^{(0)}+1\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]-\tau\left[\begin{array}{c}0+2 \\ 2 \cdot 0+1\end{array}\right]=\left[\begin{array}{l}-2 \\ -1\end{array}\right]$
$2^{\text {nd }}$ update $\left[\begin{array}{l}x_{1}^{(2)} \\ x_{2}^{(2)}\end{array}\right]=\left[\begin{array}{l}x_{1}^{(1)} \\ x_{2}^{(1)}\end{array}\right]-\tau\left[\begin{array}{c}x_{1}^{(1)}+2 \\ 2 x_{2}^{(1)}+1\end{array}\right]=\left[\begin{array}{l}-2 \\ -1\end{array}\right]-1\left[\begin{array}{c}0 \\ -1\end{array}\right]=\left[\begin{array}{c}-2 \\ 0\end{array}\right]$
- $3^{\text {rd }}$ update $\left[\begin{array}{l}x_{1}^{(3)} \\ x_{2}^{(3)}\end{array}\right]=\left[\begin{array}{c}x_{1}^{(2)} \\ x_{2}^{(2)}\end{array}\right]-\tau\left[\begin{array}{c}x_{1}^{(2)}+2 \\ 2 x_{2}^{(2)}+1\end{array}\right]=\left[\begin{array}{c}-2 \\ 0\end{array}\right]-1\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}-2 \\ -1\end{array}\right]=\left[\begin{array}{l}x_{1}^{(1)} \\ x_{2}^{(1)}\end{array}\right]$
\hookrightarrow Stuck between $x^{(1)}$ and $x^{(2)}$ forever. Decrease learning rate (adaptive step size).

Matrix Calculus

- $f: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$
- Gradient of f (w.r.t. $A \in \mathbb{R}^{m \times n}$) is the matrix of partial derivatives

$$
\nabla_{A} f(A) \in \mathbb{R}^{m \times n}=\left[\begin{array}{cccc}
\frac{\partial f(A)}{\partial A_{11}} & \frac{\partial f(A)}{\partial A_{12}} & \cdots & \frac{\partial f(A)}{\partial A_{1}} \\
\frac{\partial f(A)}{\partial A_{21}} & \frac{\partial f(A)}{\partial A_{22}} & \cdots & \frac{\partial f(A)}{\partial A_{2 n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f(A)}{\partial A_{m 1}} & \frac{\partial f(A)}{\partial A_{m 2}} & \cdots & \frac{\partial f(A)}{\partial A_{m n}}
\end{array}\right]
$$

- In general $\left(\nabla_{A} f(A)\right)_{i j}=\frac{\partial f(A)}{\partial A_{i j}}$
- If A is a vector $x \in \mathbb{R}^{n}$

$$
\nabla_{x} f(x)=\left[\begin{array}{c}
\frac{\partial f(x)}{\partial x_{1}} \\
\frac{\partial f(x)}{\partial x_{2}} \\
\vdots \\
\frac{\partial f(x)}{\partial x_{n}}
\end{array}\right]
$$

- Note the size of $\nabla_{A} f(A)$ is always same as the size of A
- Gradient of a function is only defined if the function is real-valued

■ E.g. cannot take the gradient of $A x, A \in \mathbb{R}^{n \times n}$ wrt x

Matrix Calculus Exercise

Exercise

Suppose $A=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]$ and the function $f: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}$ is given by

$$
f(A)=\frac{3}{2} A_{11}+5 A_{12}^{2}+A_{21} A_{22}
$$

Find $\nabla_{A} f(A)$

Solution

Use $\left(\nabla_{A} f(A)\right)_{i j}=\frac{\partial f(A)}{\partial A}$ to find

Matrix Calculus Exercise

Exercise

Suppose $A=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]$ and the function $f: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}$ is given by

$$
f(A)=\frac{3}{2} A_{11}+5 A_{12}^{2}+A_{21} A_{22}
$$

Find $\nabla_{A} f(A)$

Solution

Use $\left(\nabla_{A} f(A)\right)_{i j}=\frac{\partial f(A)}{\partial A_{i j}}$ to find

$$
\nabla_{A} f(A)=\left[\begin{array}{cc}
\frac{3}{2} & 10 A_{12} \\
A_{22} & A_{21}
\end{array}\right]
$$

Properties

- $\nabla_{x}(f(x)+g(x))=\nabla_{x} f(x)+\nabla_{x} g(x)$
- $t \in \mathbb{R}, \quad \nabla_{x}(t f(x))=t \nabla_{x} f(x)$

Working with gradients can be tricky (!)

- $A \in \mathbb{R}^{m \times n}$ matrix of fixed coefficients
- $b \in \mathbb{R}^{m}$ vector of fixed coefficients
- $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ defined by $f(z)=z^{T} z$ such that $\nabla_{z} f(z)=2 z$

How do we express $\nabla f(A x)$?
■ Recall $\nabla_{z} f(z)=2 z$. Interpret $\nabla f(A x)$ as evaluating the gradient at point $A x$

$$
\nabla f(A x)=2(A x)=2 A x \in \mathbb{R}^{m}
$$

2 Interpret $f(A x)$ as a function of input variables x. If $g(x)=f(A x)$ then

$$
\nabla f(A x)=\nabla_{x} g(x) \in \mathbb{R}^{n}
$$

- Make explicit variables which we are differentiating with respect to

■ $\nabla_{z} f(A x)$ - Differentiate f wrt its arguments z then substituting $A x$
■ $\nabla_{x} f(A x)$ - Differentiate composite $g(x)=f(A x)$ wrt x directly

The Hessian

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- Hessian matrix wrt $x, \nabla_{x}^{2} f(x)$ or H , is $n \times n$ matrix of partial derivatives

$$
\nabla_{x}^{2} f(x) \in \mathbb{R}^{n \times n}=\left[\begin{array}{cccc}
\frac{\partial^{2} f(x)}{\partial x_{1}^{2}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{2}} & \ldots & \frac{\partial^{2} f(x)}{\partial x_{n}^{2}}
\end{array}\right]
$$

- In general $\nabla_{x}^{2} f(x) \in \mathbb{R}^{n \times n}$ with

$$
\left(\nabla_{x}^{2} f(x)\right)_{i j}=\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}
$$

- Note Hessian is symmetric since

$$
\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} f(x)}{\partial x_{j} \partial x_{i}}
$$

■ Hessian defined only when $f(x)$ is real-valued

The Hessian

- Gradient is the analogue of the first derivative for functions of vectors
- Hessian is the analogue of the second derivative

Caveats to keep in mind
■ For real-valued functions of one variable $f: \mathbb{R} \rightarrow \mathbb{R}$, the second derivative is the derivative of the first derivative

$$
\frac{\partial^{2} f(x)}{\partial x^{2}}=\frac{\partial}{\partial x} \frac{\partial}{\partial x} f(x)
$$

2 For functions of a vector, the gradient of the function is a vector, and we cannot take the gradient of a vector

$$
\nabla_{x} \nabla_{x} f(x)=\nabla_{x}\left[\begin{array}{c}
\frac{\partial f(x)}{\partial x_{1}} \tag{!}\\
\frac{\partial f(x)}{\partial x_{2}} \\
\vdots \\
\frac{\partial f(x)}{\partial x_{n}}
\end{array}\right]
$$

The Hessian

- Hessian is not the gradient of the gradient
- Almost true in the following sense
- Look at $i^{\text {th }}$ entry of the gradient $\left(\nabla_{x} f(x)\right)_{i}=\partial f(x) / \partial x_{i}$
- Take the gradient wrt x

$$
\nabla_{x} \frac{\partial f(x)}{\partial x_{i}}=\left[\begin{array}{c}
\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{1}} \\
\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{2}} \\
\vdots \\
\frac{\partial f(x)}{\partial x_{i} \partial x_{n}}
\end{array}\right]
$$

- which is $i^{\text {th }}$ column (or row) of Hessian. Hence

$$
\nabla_{x}^{2} f(x)=\left[\begin{array}{llll}
\nabla_{x}\left(\nabla_{x} f(x)\right)_{1} & \nabla_{x}\left(\nabla_{x} f(x)\right)_{2} & \ldots & \nabla_{x}\left(\nabla_{x} f(x)\right)_{n}
\end{array}\right]
$$

- $\nabla_{x}^{2} f(x)=\nabla_{x}\left(\nabla_{x} f(x)\right)^{T}$

Gradients of Linear Functions

- $x \in \mathbb{R}^{n}, \quad f(x)=b^{T} x$ for known $b \in \mathbb{R}^{n}$

$$
\begin{aligned}
f(x) & =\sum_{i=1}^{n} b_{i} x_{i} \\
\frac{\partial f(x)}{\partial x_{k}} & =\frac{\partial}{\partial x_{k}} \sum_{i=1}^{n} b_{i} x_{i}=b_{k}
\end{aligned}
$$

- $\nabla_{x} b^{T} x=b$
- $\partial /(\partial x) a x=a \quad$ (single variable calculus)

Gradients of Quadratic Functions

- Quadratic function $f(x)=x^{T} A x$ for $A \in \mathbb{S}^{n}$

$$
\begin{aligned}
f(x) & =\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j} \\
\frac{\partial f(x)}{\partial x_{k}} & =\frac{\partial}{\partial x_{k}} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j} \\
& =\frac{\partial}{\partial x_{k}}\left[\sum_{i \neq k} \sum_{j \neq k} A_{i j} x_{i} x_{j}+\sum_{i \neq k} A_{i k} x_{i} x_{k}+\sum_{j \neq k} A_{k j} x_{k} x_{j}+A_{k k} x_{k}^{2}\right] \\
& =\sum_{i \neq k} A_{i j} x_{i}+\sum_{j \neq k} A_{k j} x_{j}+2 A_{k k} x_{k} \\
& =\sum_{i=1}^{n} A_{i k} x_{i}+\sum_{j=1}^{n} A_{k j} x_{j} \\
& =2 \sum_{i=1}^{n} A_{k i} x_{i}
\end{aligned}
$$

- $k^{t h}$ entry of $\nabla_{x} f(x)$ is inner product of $k^{t h}$ row of A and x
- $\nabla_{x} x^{T} A x=2 A x$
- $\partial /(\partial x) a x^{2}=2 a x \quad$ (single variable calculus)

Hessians of Quadratic Functions

- Quadratic function $f(x)=x^{T} A x$ for $A \in \mathbb{S}^{n}$

$$
\begin{aligned}
\frac{\partial^{2} f(x)}{\partial x_{k} \partial x_{l}} & =\frac{\partial}{\partial x_{k}}\left[\frac{\partial f(x)}{\partial x_{l}}\right] \\
& =\frac{\partial}{\partial x_{k}}\left[2 \sum_{i=1}^{n} A_{l i} x_{i}\right] \\
& =2 A_{l k} \\
& =2 A_{k l}
\end{aligned}
$$

- $\nabla_{x}^{2} x^{T} A x=2 A$
- $\partial^{2} /\left(\partial x^{2}\right) a x^{2}=2 a \quad$ (single variable calculus)

Recap

- $\nabla_{x} b^{T} x=b$
- $\nabla_{x} x^{T} A x=2 A x \quad$ (if A symmetric)
- $\nabla_{x}^{2} x^{T} A x=2 A \quad$ (if A symmetric)

Least Squares

- $A \in \mathbb{R}^{m \times n}$ of full rank
- $b \in \mathbb{R}^{m}$ such that $b \notin \mathcal{R}(A)$
\hookrightarrow Not able to find a vector $x \in \mathbb{R}^{n}$ such that $A x=b$
\hookrightarrow Find a vector x such that $A x$ is as close as possible to b, measured by Euclidean norm $\|A x-b\|_{2}^{2}$

$$
\begin{aligned}
\|A x-b\|_{2}^{2} & =(A x-b)^{T}(A x-b) \\
& =x^{T} A^{T} A x-2 b^{T} A x+b^{T} b
\end{aligned}
$$

- Take gradient wrt x

$$
\begin{aligned}
\nabla_{x}\left(x^{T} A^{T} A x-2 b^{T} A x+b^{T} b\right) & =\nabla_{x} x^{T} A^{T} A x-\nabla_{x} 2 b^{T} A x+\nabla_{x} b^{T} b \\
& =2 A^{T} A x-2 A^{T} b
\end{aligned}
$$

- Set to zero and solve for x

$$
x=\left(A^{T} A\right)^{-1} A^{T} b
$$

Eigenvalues as Optimization

- Equality constrained optimization problem

$$
\max _{x \in \mathbb{R}^{n}} x^{T} A x \quad \text { subject to }\|x\|_{2}^{2}=1
$$

- Lagrangian

$$
\mathcal{L}(x, \lambda)=x^{T} A x-\lambda x^{T} x
$$

- λ - Lagrange multiplier associated with equality constraint
- For x^{*} to be an optimal point, the gradient of the Lagrangian has to be zero at x^{*}

$$
\begin{aligned}
\nabla_{x} \mathcal{L}(x, \lambda) & =\nabla_{x}\left(x^{T} A x-\lambda x^{T} x\right) \\
& =2 A^{T} x-2 \lambda x \\
& =0
\end{aligned}
$$

- Linear equation $A x=\lambda x$
- The only points that can possible maximize (or minimize) $x^{T} A x$ assuming $x^{T} x=1$ are eigenvectors of A

The Perceptron

Structure:

- Weighted sum of input features

$$
\begin{aligned}
z & =\sum_{i=1}^{n} w_{i} x_{i}+b \\
& =\mathbf{w}^{T} \mathbf{x}+b
\end{aligned}
$$

- Followed by the sign function

$$
y=\operatorname{sign}(z)
$$

Learning task: Given input data

$$
\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \mathbf{x}^{(m)} \in \mathbb{R}^{n}
$$

of corresponding labels $t^{(1)}, t^{(2)}, \ldots, t^{(m)} \in\{-1,1\}$

- Goal is to learn a collection of parameters (\mathbf{w}, b) such that

$$
\min _{\mathbf{w}, b} \sum_{j=1}^{m} \mathcal{L}\left(t^{j}, \mathbf{w}^{T} \mathbf{x}^{j}+b\right)
$$

- $\mathcal{L}(\mathbf{w}, b)$ denotes the error function

The Perceptron

- Predictions of the perceptron for each datapoint

$$
\begin{aligned}
z^{(j)} & =\mathbf{w}^{T} \mathbf{x}^{(j)}+b \\
y^{(j)} & =\operatorname{sign}\left(z^{(j)}\right)
\end{aligned}
$$

Question:

Can all the points be correctly classified

$$
\exists(\mathbf{w}, b): y^{(j)}=t^{(j)}, \forall_{j=1}^{m} ?
$$

The Perceptron Algorithm

Perceptron Algorithm

- Initialize $\mathbf{w}=\mathbf{0}$ and $b=0$
- Repeat for $j=1, \ldots, m$
- If $\mathbf{x}^{(j)}$ is correctly classified $\left(y^{(j)}=t^{(j)}\right)$, continue
- If $\mathbf{x}^{(j)}$ is wrongly classified $\left(y^{(j)} \neq t^{(j)}\right)$, update

$$
\begin{aligned}
\mathbf{w} & \leftarrow \mathbf{w}+\eta \cdot \mathbf{x}^{(j)} t^{(j)} \\
b & \leftarrow b+\eta \cdot t^{(j)}
\end{aligned}
$$

for some learning rate η

- Until all examples are classified correctly

Optimization View of Perceptron

Proposition

The perceptron is equivalent to the gradient descent of the so-called Hinge Loss

$$
\mathcal{L}(\mathbf{w}, b)=\frac{1}{m} \sum_{j=1}^{m} \underbrace{\max \left(0,-z^{(j)} t^{(j)}\right)}_{\mathcal{L}_{j}(\mathbf{w}, b)}
$$

Proof.

$$
\begin{aligned}
\mathbf{w}-\eta \frac{\partial \mathcal{L}_{j}}{\partial \mathbf{w}} & =\mathbf{w}-\eta \cdot 1_{-z^{(j)}} t^{(j)>0} \cdot\left(-\frac{\partial z^{(j)}}{\partial \mathbf{w}} t^{(j)}\right) \\
& =\mathbf{w}-\eta \cdot 1_{y^{(j)} \neq t(j)} \cdot\left(-\frac{\partial z^{(j)}}{\partial \mathbf{w}} t^{(j)}\right) \\
& =\mathbf{w}+\eta \cdot 1_{y^{(j)} \neq t^{(j)}} \cdot \mathbf{x}^{(j)} t^{(j)}
\end{aligned}
$$

- Proceed similarly for the parameter b

From Perceptron to Deep Neural Networks

Idea:

Stack multiple perceptrons together to generalize the formulation where z is the output of a multilayer neural network with parameters θ
\hookrightarrow Updated error function $\mathcal{L}(\theta)$

Numerical Differentiation

Question:

How hard is it to compute the gradient of the error function w.r.t. the model parameters

$$
\theta=\theta-\eta \frac{\partial \mathcal{L}}{\partial \theta} ?
$$

Idea:

Use the definition of the derivative

$$
\forall_{t}: \frac{\partial \mathcal{L}}{\partial \theta_{t}}=\lim _{\varepsilon \rightarrow 0} \frac{\mathcal{L}\left(\theta+\varepsilon \cdot \delta_{t}\right)-\mathcal{L}(\theta)}{\varepsilon}
$$

- δ_{t} denotes an indicator vector for the parameter t

Properties:

- Applicable to any error function \mathcal{L}
- Re-evaluate the function as many times as there are parameters (\hookrightarrow slow for a large number of parameters)
- Neural networks typically have between 10^{3} and 10^{9} parameters (\hookrightarrow numerical differentiation unfeasible)
= Need to use high-precision due to small ε and numerator

Non-convex error function

Problems:

- $\mathcal{L}(\theta)$ is non-convex and non-linear
- For complex functions, the computation of $\nabla_{\theta} \mathcal{L}$ is tricky to be done by hand

Question:

Can we do this automatically?

- A general rule to find the weights θ was not discovered until 1974 (Paul Werbos) / 1985 (LeCun) / 1986 (Rumelhart et al.)

Idea:

Need to compute the gradient $\partial \mathcal{L} / \partial w_{j k}$
\hookrightarrow Compute the error at the output, and propagate that back to the neurons in the earlier layers
\hookrightarrow Compute the gradient

Recall the Chain Rule

- Assume some parameter of interest θ_{q} and the output of the network z are linked through a sequence of functions

$$
\theta_{q} \longrightarrow a \longrightarrow b \longrightarrow z
$$

- Applying the chain rule for derivatives, the derivative w.r.t. the parameter of interest is the product of local derivatives along the path connecting θ_{q} to z

$$
\frac{\partial z}{\partial \theta_{q}}=\frac{\partial a}{\partial \theta_{q}} \frac{\partial b}{\partial a} \frac{\partial z}{\partial b}
$$

The Multivariate Chain Rule

- The parameter of interest may be linked to the output of the network via multiple paths, formed by all neurons in layers between θ_{q} and z

- Multivariate scenario \Rightarrow the chain rule enumerates all the paths between θ_{q} and z

$$
\frac{\partial z}{\partial \theta_{q}}=\sum_{i} \sum_{j} \frac{\partial a_{i}}{\partial \theta_{q}} \frac{\partial b_{j}}{\partial a_{j}} \frac{\partial z}{\partial b_{j}}
$$

where \sum_{i} and \sum_{j} run over all indices of the nodes in the corresponding layers

- Nested sum - complexity grows exponentially with the number of layers

Factor Structure in the Multivariate Chain Rule

- Re-write the computation - perform the summing operation incrementally
- Re-use intermediate computation for different paths and parameters for which we would like to compute the gradient

$$
\frac{\partial z}{\partial \theta_{q}}=\sum_{i} \frac{\partial a_{i}}{\partial \theta_{q}} \underbrace{\sum_{j} \frac{\partial b_{j}}{\partial a_{j}} \underbrace{\frac{\partial z}{\partial b_{j}}}_{\delta_{j}}}_{\delta_{i}}
$$

- The resulting gradient computation w.r.t. all parameters in the network is linear with the size of the network (\Rightarrow fast!)

Backpropagation through Example

Forward pass:

$$
\begin{aligned}
z_{3} & =a_{1} w_{13} \\
z_{4} & =a_{1} w_{14}+a_{2} w_{24} \\
z_{5} & =a_{3} w_{35}+a_{4} w_{45} \\
z_{6} & =a_{4} w_{46} \\
z_{\text {out }} & =a_{5} v_{5}+a_{6} v_{6} \\
\mathcal{L} & =\max \left(0,-z_{\text {out }} \cdot t\right)
\end{aligned}
$$

$$
\begin{aligned}
a_{1} & =x_{1} \\
a_{2} & =x_{2} \\
a_{3} & =\tanh \left(z_{3}\right) \\
a_{4} & =\tanh \left(z_{4}\right) \\
a_{5} & =\tanh \left(z_{5}\right) \\
a_{6} & =\tanh \left(z_{6}\right)
\end{aligned}
$$

Backpropagation through Example

$$
z_{3}=a_{1} w_{13}
$$

$$
z_{4}=a_{1} w_{14}+a_{2} w_{24}
$$

$$
\begin{aligned}
a_{1} & =x_{1} \\
a_{2} & =x_{2} \\
a_{3} & =\tanh \left(z_{3}\right) \\
a_{4} & =\tanh \left(z_{4}\right) \\
a_{5} & =\tanh \left(z_{5}\right) \\
a_{6} & =\tanh \left(z_{6}\right)
\end{aligned}
$$

Backward pass:

$$
\begin{aligned}
& \delta_{\text {out }}= \frac{\partial \mathcal{L}}{\partial z_{\text {out }}}=1_{\left\{-z_{\text {out }} \cdot t>0\right\}} \cdot(-t) \\
& \frac{\partial \mathcal{L}}{\partial v_{6}}=\frac{\partial z_{\text {out }}}{\partial v_{6}} \frac{\partial \mathcal{L}}{\partial z_{\text {out }}}=a_{6} \cdot \delta_{\text {out }} \\
& \frac{\partial \mathcal{L}}{\partial v_{5}}=\frac{\partial z_{\text {out }}}{\partial v_{5}} \frac{\partial \mathcal{L}}{\partial z_{\text {out }}}=a_{5} \cdot \delta_{\text {out }}
\end{aligned}
$$

Backpropagation through Example

$$
z_{3}=a_{1} w_{13}
$$

$$
z_{4}=a_{1} w_{14}+a_{2} w_{24}
$$

$$
\begin{aligned}
& a_{1}=x_{1} \\
& a_{2}=x_{2} \\
& a_{3}=\tanh \left(z_{3}\right) \\
& a_{4}=\tanh \left(z_{4}\right) \\
& a_{5}=\tanh \left(z_{5}\right) \\
& a_{6}=\tanh \left(z_{6}\right)
\end{aligned}
$$

Backward pass:

$$
\begin{aligned}
\delta_{\text {out }} & =\frac{\partial \mathcal{L}}{\partial z_{\text {out }}}=1_{\left\{-z_{\text {out }} \cdot t>0\right\}} \cdot(-t) \\
\delta_{6} & =\frac{\partial \mathcal{L}}{\partial a_{6}}=\frac{\partial z_{\text {out }}}{\partial a_{6}} \frac{\partial \mathcal{L}}{\partial z_{\text {out }}}=v_{6} \cdot \delta_{\text {out }} \\
\delta_{5} & =\frac{\partial \mathcal{L}}{\partial a_{5}}=\frac{\partial z_{\text {out }}}{\partial a_{5}} \frac{\partial \mathcal{L}}{\partial z_{\text {out }}}=v_{5} \cdot \delta_{\text {out }}
\end{aligned}
$$

Backpropagation through Example

$$
\begin{aligned}
a_{1} & =x_{1} \\
a_{2} & =x_{2} \\
a_{3} & =\tanh \left(z_{3}\right) \\
a_{4} & =\tanh \left(z_{4}\right) \\
a_{5} & =\tanh \left(z_{5}\right) \\
a_{6} & =\tanh \left(z_{6}\right)
\end{aligned}
$$

Backward pass:

$$
\begin{aligned}
\delta_{6}=\frac{\partial \mathcal{L}}{\partial a_{6}} & =\frac{\partial z_{\text {out }}}{\partial a_{6}} \frac{\partial \mathcal{L}}{\partial z_{\text {out }}}=v_{6} \cdot \delta_{\text {out }} \\
\delta_{5}=\quad \frac{\partial \mathcal{L}}{\partial a_{5}} & =\frac{\partial z_{\text {out }}}{\partial a_{5}} \frac{\partial \mathcal{L}}{\partial z_{\text {out }}}=v_{5} \cdot \delta_{\text {out }} \\
\frac{\partial \mathcal{L}}{\partial w_{46}} & =\frac{\partial z_{6}}{\partial w_{46}} \frac{\partial a_{6}}{\partial z_{6}} \frac{\partial \mathcal{L}}{\partial a_{6}}=a_{4} \cdot \tanh ^{\prime}\left(z_{6}\right) \cdot \delta_{6} \\
\frac{\partial \mathcal{L}}{\partial w_{45}} & =\frac{\partial z_{5}}{\partial w_{45}} \frac{\partial a_{5}}{\partial z_{5}} \frac{\partial \mathcal{L}}{\partial a_{5}}=a_{4} \cdot \tanh ^{\prime}\left(z_{5}\right) \cdot \delta_{5} \\
\frac{\partial \mathcal{L}}{\partial w_{35}} & =\frac{\partial z_{5}}{\partial w_{35}} \frac{\partial a_{5}}{\partial z_{5}} \frac{\partial \mathcal{L}}{\partial a_{3}}=a_{5} \cdot \tanh ^{\prime}\left(z_{5}\right) \cdot \delta_{5}
\end{aligned}
$$

Backpropagation through Example

$$
\begin{aligned}
& z_{3}=a_{1} w_{13} \\
& z_{4}=a_{1} w_{14}+a_{2} w_{24}
\end{aligned}
$$

$$
\begin{aligned}
a_{1} & =x_{1} \\
a_{2} & =x_{2} \\
a_{3} & =\tanh \left(z_{3}\right) \\
a_{4} & =\tanh \left(z_{4}\right) \\
a_{5} & =\tanh \left(z_{5}\right) \\
a_{6} & =\tanh \left(z_{6}\right)
\end{aligned}
$$

Backward pass:
$\delta_{6}=\frac{\partial \mathcal{L}}{\partial a_{6}}=\frac{\partial z_{\text {out }}}{\partial a_{6}} \frac{\partial \mathcal{L}}{\partial z_{\text {out }}}=v_{6} \cdot \delta_{\text {out }}$
$\delta_{5}=\frac{\partial \mathcal{L}}{\partial a_{5}}=\frac{\partial z_{\text {out }}}{\partial a_{5}} \frac{\partial \mathcal{L}}{\partial z_{\text {out }}}=v_{5} \cdot \delta_{\text {out }}$
$\delta_{4}=\frac{\partial \mathcal{L}}{\partial a_{4}}=\frac{\partial z_{6}}{\partial a_{4}} \frac{\partial a_{6}}{\partial z_{6}} \frac{\partial \mathcal{L}}{\partial a_{6}}+\frac{\partial z_{5}}{\partial a_{4}} \frac{\partial a_{5}}{\partial z_{5}} \frac{\partial \mathcal{L}}{\partial a_{5}}=w_{46} \cdot \tanh ^{\prime}\left(z_{6}\right) \cdot \delta_{6}+w_{45} \cdot \tanh ^{\prime}\left(z_{5}\right) \cdot \delta_{5}$
$\delta_{3}=\frac{\partial \mathcal{L}}{\partial a_{3}}=\frac{\partial z_{5}}{\partial a_{3}} \frac{\partial a_{5}}{\partial z_{5}} \frac{\partial \mathcal{L}}{\partial a_{5}}=w_{35} \cdot \tanh ^{\prime}\left(z_{5}\right) \cdot \delta_{5}$

Backpropagation through Example

$$
\begin{aligned}
a_{1} & =x_{1} \\
a_{2} & =x_{2} \\
a_{3} & =\tanh \left(z_{3}\right) \\
a_{4} & =\tanh \left(z_{4}\right) \\
a_{5} & =\tanh \left(z_{5}\right) \\
a_{6} & =\tanh \left(z_{6}\right)
\end{aligned}
$$

Backward pass:

$$
\begin{aligned}
\delta_{4}=\frac{\partial \mathcal{L}}{\partial a_{4}} & =\frac{\partial z_{6}}{\partial a_{4}} \frac{\partial a_{6}}{\partial z_{6}} \frac{\partial \mathcal{L}}{\partial a_{6}}+\frac{\partial z_{5}}{\partial a_{4}} \frac{\partial a_{5}}{\partial z_{5}} \frac{\partial \mathcal{L}}{\partial a_{5}}=w_{46} \cdot \tanh ^{\prime}\left(z_{6}\right) \cdot \delta_{6}+w_{45} \cdot \tanh ^{\prime}\left(z_{5}\right) \cdot \delta_{5} \\
\delta_{3}=\frac{\partial \mathcal{L}}{\partial a_{3}} & =\frac{\partial z_{5}}{\partial a_{3}} \frac{\partial a_{5}}{\partial z_{5}} \frac{\partial \mathcal{L}}{\partial a_{5}}=w_{35} \cdot \tanh ^{\prime}\left(z_{5}\right) \cdot \delta_{5} \\
\frac{\partial \mathcal{L}}{\partial w_{24}} & =\frac{\partial z_{4}}{\partial w_{24}} \frac{\partial a_{4}}{\partial z_{4}} \frac{\partial \mathcal{L}}{\partial a_{4}}=a_{2} \cdot \tanh ^{\prime}\left(z_{4}\right) \cdot \delta_{4} \\
\frac{\partial \mathcal{L}}{\partial w_{14}} & =\frac{\partial z_{4}}{\partial w_{14}} \frac{\partial a_{4}}{\partial z_{4}} \frac{\partial \mathcal{L}}{\partial a_{4}}=a_{1} \cdot \tanh ^{\prime}\left(z_{4}\right) \cdot \delta_{4} \\
\frac{\partial \mathcal{L}}{\partial w_{13}} & =\frac{\partial z_{3}}{\partial w_{13}} \frac{\partial a_{3}}{\partial z_{3}} \frac{\partial \mathcal{L}}{\partial a_{3}}=a_{1} \cdot \tanh ^{\prime}\left(z_{3}\right) \cdot \delta_{3}
\end{aligned}
$$

Formalization for a Standard Neural Network

- Propagate the gradient of the error from layer to layer using the chain rule

$$
\underbrace{\frac{\partial \mathcal{L}}{\partial a_{j}}}_{\delta_{j}}=\sum_{k} \underbrace{\frac{\partial a_{k}}{\partial a_{j}}}_{w_{j k} g^{\prime}\left(z_{k}\right)} \cdot \underbrace{\frac{\partial \mathcal{L}}{\partial a_{k}}}_{\delta_{k}}
$$

- Extract gradients w.r.t. parameters at each layer as

$$
\frac{\partial \mathcal{L}}{\partial w_{j k}}=\sum_{k} \underbrace{\frac{\partial a_{k}}{\partial w_{j k}}}_{a_{j} g^{\prime}\left(z_{k}\right)} \cdot \underbrace{\frac{\partial \mathcal{L}}{\partial a_{k}}}_{\delta_{k}}
$$

- Re-write equations as matrix-vector products

$$
\begin{aligned}
\delta^{(l-1)} & =W^{(l-1, l)} \cdot\left(g^{\prime}\left(\mathbf{z}^{(l)}\right) \odot \delta^{(l)}\right) \\
\frac{\partial \mathcal{L}}{\partial W^{(l-1, l)}} & =\mathbf{a} \cdot\left(g^{\prime}\left(\mathbf{z}^{(l)}\right) \odot \delta^{(l)}\right)^{T}
\end{aligned}
$$

Vanishing gradient

- In general

$$
\partial \mathcal{L} / \partial W^{(l-1, l)} \gg \partial \mathcal{L} / \partial W^{(l-2, l-1)}
$$

\Rightarrow the more left you get in the network, the more the gradient vanishes

- tanh has gradients in the range $(0,1]$
\Rightarrow in an n-layer network the gradient decreases exponentially with n

Ways to circumvent vanishing gradients

- Use many labeled data (e.g., well possible for images)
- Train 'longer" (possible with GPUs)
- Better weight initialization (e.g., Xavier/Glorot)

■ Regularize with "dropout"

- Other activation functions: ReLU

Choice of Nonlinear Activation Function

Choose the nonlinear function such that

- Its gradient is defined (almost) everywhere
- A significant portion of the input domain has a non-zero gradient
- Its gradient is informative, i.e., indicate decrease/increase of the activation function

Commonly used activation functions:

- Sigmoid $g(z)=\exp (z) /(1+\exp (z))$
- tanh $g(z)=\tanh (z)$
- ReLU $\quad g(z)=\max (0, z)$

Problematic activation functions:

- $g(z)=\max (0, z-100)$
- $g(z)=1_{z>0}$
- $g(z)=\sin (100 \cdot z)$

Automatic Differentiation

- Automatically generate backpropagation equations from the forward equations
- Automatic differentiation widely available in deep learning libraries (PyTorch, Tensorflow, JAX, etc.)

Consequences:

- No need to do backpropagation, just program the forward pass \hookrightarrow backward pass comes for free
- Motivated the development of neural networks that are way more complex, and with much more heterogeneous structures (e.g. ResNet, Yolo, transformers, etc.)
- In few cases, it is still useful to express the gradient analytically (e.g. to analyze theoretically the stability of a gradient descent procedure)

Training Neural Networks

Basic gradient descent algorithm

- Initialize θ at random
- Repeat for T steps
- Compute the forward pass
- Use backpropagation to extract $\partial \mathcal{L} / \partial \theta$
- Perform a gradient step

$$
\theta=\theta-\gamma \frac{\partial \mathcal{L}}{\partial \theta}
$$

for some learning rate γ

Summary

- Gradient descent to minimize the error of a classifier (e.g. Perceptron, neural network + backpropagation)
- Error backpropagation provides a computationally efficient way of computing the gradient compared to the formula for numerical differentiation
- Error backpropagation is a direct application of the multivariate chain rule, where the different terms can be factored due to the structure of the neural network graph
- Use certain techniques to circumvent vanishing gradients
- No need to program error backpropagation manually, use automatic differentiation techniques instead

THANK YOU!

Slides available at:
www.shpresimsadiku.com
Check related information on Twitter at:
@shpresimsadiku

