CALCULUS FOR DATA SCIENCE

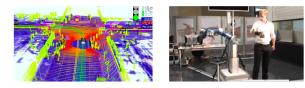
A workshop by Shpresim Sadiku Institute of Mathematics, Technische Universität Berlin

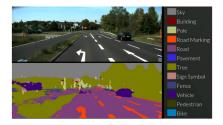
Lecturer

- Shpresim Sadiku
- sadiku@zib.de
- www.shpresimsadiku.com
- PhD Candidate in Mathematics at TU Berlin
- Scientific Assistant at Zuse Institute Berlin
- Passionate about Artificial Intelligence
- I love to travel and lift weights

Why Data Science?

Self-driving cars and robotics





Typical problems in Data Science

Image Compression

Noise Reduction

Natural Language Processing

Prerequisites for Data Science

Mathematical background in

- Linear Algebra (August 16)
- Calculus (Today)
- Statistics and Probability Theory (August 18)

Outline

- Variables and Functions
- Limits
- Derivatives
- Integrals
- Gradient Descent
- Matrix Calculus
- The Hessian
- Least Squares
- Eigenvalues as Optimization
- The Perceptron Algorithm
- Perceptron via gradient descent
- Gradients of a Neural Networks
- Numerical gradient computation
- Backpropagation algorithm
 - Chain rule and multivariate chain rule
 - Backpropagation through example
 - Formalization of backpropagation
 - Vanishing gradients
 - Choice of nonlinear activation functions
 - Automatic differentiation

Numbers

- Natural numbers 1, 2, 3, 4, 5...
- Whole numbers introduce 0 for numbers greater than 9 such as 10, 1000, 1090
- Integers ..., -2, -1, 0, 1, 2, ...
- Rational numbers any number that can be expressed as a fraction ²/₃, ⁶⁸⁷/₁₀₀, 2
 Note all finite decimals and integers are also rational
- **Irrational numbers** cannot be expressed as a fraction $\pi, \sqrt{2}, e$
 - Infinite number of decimal digits (3.141592653589793238462...)
 - Prove that $\sqrt{2}$ is irrational (!)
- **Real numbers** rational and irrational numbers
- Complex and imaginary numbers encountered when taking square root of a negative number
 - In data science for e.g. matrix decomposition

Order of Operations

$2 \times \frac{(3+2)^2}{5}$ ParenthesesExponentsMultiplicationDivision $2 \times \frac{25}{5}$ AdditionSubtraction	- 4
---	-----

6

Variables and Functions

- A *variable* is a named placeholder for an unspecified or unknown number
 Denoted by α, β, θ
- Can represent any real number, can do math operations with it
- **Functions** define relationships between two or more variables
- Take *input variables*, plug them into an expression, and result in an *output variable*

$$y = 2x + 1$$

$$x \quad 2x + 1 \quad y$$

$$0 \quad 2(0) + 1 \quad 1$$

$$1 \quad 2(1) + 1 \quad 3$$

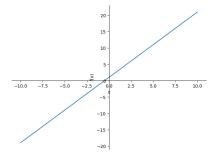
$$2 \quad 2(2) + 1 \quad 5$$

$$3 \quad 2(3) + 1 \quad 7$$

• Can also be expressed as f(x) = 2x + 1

Continuous Functions

- Making steps of x infinitely small then y = 2x + 1 is a *continuous function*
 - \blacksquare For every possible value of x there is a value of y



Exercises

- Plot $f(x) = x^2 + 1$
- Plot f(x, y) = 2x + 3y

Logarithms

Logarithm is a math function that finds a power for a specific number and base

- Applications in measuring earthquakes, managing volume on your stereo
- Used in logistic regression

• E.g.
$$2^x = 8$$
 or $x = \log_2 8 = 3$

- \blacksquare In general $a^x = b \iff \log_a b = x$
 - Default base in earthquake measurements is 10
 - Default base in data science and Python is e

Properties

$$\log(a \times b) = \log(a) + \log(b)$$

$$\log(\frac{a}{b}) = \log(a) - \log(b)$$

$$\log(a^n) = n \times \log(a)$$

$$\log(1) = 0$$

$$\log(x^{-1}) = \log(\frac{1}{x}) = -\log(x)$$

Euler's Number e

• *e* is resulting value of $(1 + \frac{1}{n})^n$ as *n* gets bigger and bigger

$$\left(1 + \frac{1}{100}\right)^{100} = 2.79481382942$$
$$\left(1 + \frac{1}{1000}\right)^{1000} = 2.71692393224$$
$$\left(1 + \frac{1}{10000}\right)^{10000} = 2.71814592682$$
$$\left(1 + \frac{1}{10000000}\right)^{10000000} = 2.71828169413$$

As n gets larger it converges approximately on 2.71828 which gives e

Limits

- \bullet e increasing input variable the output keeps approaching a value but never reaches it
- As x increases forever, f(x) gets closer to 0 but never reaches it

$$\lim_{x \to \infty} \frac{1}{x} = 0$$

$$\lim_{x \to \infty} \frac{1}{x} = 0$$

Derivatives

■ *Derivative* - gives the slope of a function

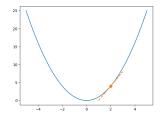
- Measures the rate of change at any point in a function
- Derivatives are used in ML algorithms, e.g. gradient descent
- When slope is 0, we are at the minimum or maximum of an output variable

 $\bullet \ f(x) = x^2$

- Measure steepness at any point in curve, visualize with a tangent line
- x = 2 and x = 2.1
- f(x) = 4 and f(x) = 4.41
- Calculate slope m between two points

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{4.41 - 4.0}{2.1 - 2.0} = 4.1$$

If $x_2 = 2.00001$ then m = 4.00004 very close to actual slope of 4



Derivatives

 \blacksquare Exponential function like $f(x)=x^2$ - derivative will make exponent a multiplier and decrement exponent by 1

$$\frac{d}{dx}f(x) = \frac{d}{dx}x^2 = 2x$$
$$\frac{d}{dx}f(2) = 2(2) = 4$$

Use Python library SymPy to calculate derivativesFormal definition

$$f(x)' = \lim_{s \to 0} \frac{(x+s)^2 - x^2}{(x+s) - x}$$

$$\lim_{s \to \infty} \frac{(2+s)^2 - 2^2}{(2+s) - 2} = 4$$

Partial Derivatives

- Slopes wrt multiple variables in several directions
- For each given variable, assume other variables are constant
- $\bullet \ f(x,y) = 2x^3 + 3y^3$

$$\frac{d}{dx}2x^3 + 3y^3 = 6x^2
\frac{d}{dy}2x^3 + 3y^3 = 9y^2$$

- For (x, y) values (1, 2), slope wrt x is 6(1) = 6 and wrt y is $9(2)^2 = 36$
- \blacksquare Forever approaching step size s to 0 but never reaching it (otherwise no line), we converge on a slope of 4

The Chain Rule

$$y = x^2 + 1, \quad z = y^3 - 2$$

I Substitute first function y into second function z

$$\begin{array}{rcl} z & = & (x^2+1)^3-2 \\ \frac{dz}{dx}((x^2+1)^3-2) & = & 6x(x^2+1)^2 \end{array}$$

2 Take derivatives of y and z separately, then multiply them

$$\frac{dy}{dx}(x^2+1) = 2x$$
$$\frac{dz}{dy}(y^3-2) = 3y^1$$
$$\frac{dz}{dx} = (2x)(3y^2) = 6xy^2$$

 \blacksquare Substitute y

$$\frac{dz}{dx} = 6xy^2 = 6x(x^2 + 1)^2$$

The chain rule

$$\frac{dz}{dx} = \frac{dz}{dy} \times \frac{dy}{dx}$$

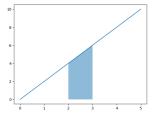
Shpresim Sadiku

Calculus for Data Science

Integrals

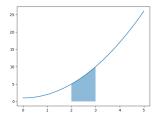
- Opposite of derivative is integral
- Finds area under the curve for a given range
- Area for a range under a straight line is easy

- $\bullet f(x) = 2x$
- Measure area under the line between 2 and 3
- Area of a trapezoid $\frac{(4+6)}{2} \times 1 = 5$



Integrals

- What if the function is more difficult?
- E.g. $f(x) = x^2 + 1$
- Curviness does not give a clean geometric formula to find the area
- Pack five rectangles of equal length under the curve, where height of each one extends from *x*-axis to where midpoint touches the curve
- \blacksquare Rectangle area length \times width
- The more rectangles the better the approximation
 - Increase/decrease smth toward infinity to approach an actual value



Integral approximation in Python

```
def approximate_integral(a, b, n, f):
  delta_x = (b - a) / n
  total_sum = 0
  for i in range(1, n + 1):
    midpoint = 0.5 * (2 * a + delta_x * (2 * i - 1))
    total_sum += f(midpoint)
    return total_sum * delta_x
def my_function(x):
    return x**2 + 1
area = approximate_integral(a=2, b=3, n=5, f=my_function)
print(area) # prints 7.33000000000002
```

• What happens if we use 1000 rectangles? What about 1000000?

 \blacksquare We get more precision - 7.333333250000001 and 7.3333333333333375

 \hookrightarrow Converging to 7.333 (if a rational number its likely 22/3)

Use SymPy to perform integration

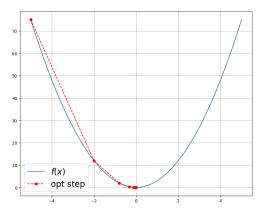
Gradient Descent

Used heavily to solve optimization problems

$$\min_{x \in \mathcal{X}} f(x)$$

where the domain \mathcal{X} is a convex set

Update rule $x^{t+1} = x^t - \tau \nabla f(x^t)$, for a learning rate $\tau > 0$



Gradient Descent Exercise

Exercise

Given $f(x_1, x_2) = 0.5x_1^2 + x_2^2 + 2x_1 + x_2 + \cos(\sin\sqrt{\pi})$

- Compute the minimum (x_1^*, x_2^*) of (x_1, x_2) analytically
- Perform two steps of gradient descent on $f(x_1, x_2)$ starting from point $(x_1^{(0)}, x_2^{(0)}) = (0, 0)$ with learning rate $\tau = 1$
- Will the gradient descent procedure ever converge to the true minimum (x_1^*, x_2^*) ?

Solution

$$\nabla f(x_1, x_2) = \begin{bmatrix} x_1 + 2 \\ 2x_2 + 1 \end{bmatrix} \stackrel{!}{=} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies \begin{bmatrix} x_1^* \\ x_2^* \end{bmatrix} = \begin{bmatrix} -2 \\ -1/2 \end{bmatrix}$$

$$1^{st} \text{ update } \begin{bmatrix} x_1^{(1)} \\ x_2^{(1)} \end{bmatrix} = \begin{bmatrix} x_1^{(0)} \\ x_2^{(0)} \end{bmatrix} - \tau \begin{bmatrix} x_1^{(0)} + 2 \\ 2x_2^{(0)} + 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} - \tau \begin{bmatrix} 0 + 2 \\ 2 \cdot 0 + 1 \end{bmatrix} = \begin{bmatrix} -2 \\ -1 \end{bmatrix}$$

$$2^{nd} \text{ update } \begin{bmatrix} x_1^{(2)} \\ x_2^{(2)} \end{bmatrix} = \begin{bmatrix} x_1^{(1)} \\ x_2^{(1)} \end{bmatrix} - \tau \begin{bmatrix} x_1^{(1)} + 2 \\ 2x_2^{(1)} + 1 \end{bmatrix} = \begin{bmatrix} -2 \\ -1 \end{bmatrix} - 1 \begin{bmatrix} 0 \\ -1 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \end{bmatrix}$$

$$3^{rd} \text{ update } \begin{bmatrix} x_1^{(3)} \\ x_2^{(3)} \end{bmatrix} = \begin{bmatrix} x_1^{(2)} \\ x_2^{(2)} \end{bmatrix} - \tau \begin{bmatrix} x_1^{(2)} + 2 \\ 2x_2^{(2)} + 1 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \end{bmatrix} - 1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ -1 \end{bmatrix} = \begin{bmatrix} x_1^{(1)} \\ x_2^{(1)} \end{bmatrix}$$

$$\hookrightarrow \text{ Stuck between } x^{(1)} \text{ and } x^{(2)} \text{ forever. Decrease learning rate (adaptive step size). }$$

Shpresim Sadiku

Calculus for Data Science

Gradient Descent Exercise

Exercise

Given $f(x_1, x_2) = 0.5x_1^2 + x_2^2 + 2x_1 + x_2 + \cos(\sin\sqrt{\pi})$

- Compute the minimum (x_1^*, x_2^*) of (x_1, x_2) analytically
- Perform two steps of gradient descent on $f(x_1, x_2)$ starting from point $(x_1^{(0)}, x_2^{(0)}) = (0, 0)$ with learning rate $\tau = 1$
- Will the gradient descent procedure ever converge to the true minimum (x_1^*, x_2^*) ?

Solution

$$\nabla f(x_1, x_2) = \begin{bmatrix} x_1 + 2\\ 2x_2 + 1 \end{bmatrix} \stackrel{!}{=} \begin{bmatrix} 0\\ 0 \end{bmatrix} \implies \begin{bmatrix} x_1^*\\ x_2^* \end{bmatrix} = \begin{bmatrix} -2\\ -1/2 \end{bmatrix}$$

$$1^{st} \text{ update } \begin{bmatrix} x_1^{(1)}\\ x_2^{(1)} \end{bmatrix} = \begin{bmatrix} x_1^{(0)}\\ x_2^{(0)} \end{bmatrix} - \tau \begin{bmatrix} x_1^{(0)} + 2\\ 2x_2^{(0)} + 1 \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix} - \tau \begin{bmatrix} 0 + 2\\ 2 \cdot 0 + 1 \end{bmatrix} = \begin{bmatrix} -2\\ -1 \end{bmatrix}$$

$$2^{nd} \text{ update } \begin{bmatrix} x_1^{(2)}\\ x_2^{(2)} \end{bmatrix} = \begin{bmatrix} x_1^{(1)}\\ x_2^{(1)} \end{bmatrix} - \tau \begin{bmatrix} x_1^{(1)} + 2\\ 2x_2^{(1)} + 1 \end{bmatrix} = \begin{bmatrix} -2\\ -1 \end{bmatrix} - 1 \begin{bmatrix} 0\\ -1 \end{bmatrix} = \begin{bmatrix} -2\\ 0 \end{bmatrix}$$

$$3^{rd} \text{ update } \begin{bmatrix} x_1^{(3)}\\ x_2^{(3)} \end{bmatrix} = \begin{bmatrix} x_1^{(2)}\\ x_2^{(2)} \end{bmatrix} - \tau \begin{bmatrix} x_1^{(2)} + 2\\ 2x_2^{(2)} + 1 \end{bmatrix} = \begin{bmatrix} -2\\ 0 \end{bmatrix} - 1 \begin{bmatrix} 0\\ 1 \end{bmatrix} = \begin{bmatrix} -2\\ -1 \end{bmatrix} = \begin{bmatrix} x_1^{(1)}\\ x_2^{(1)} \end{bmatrix}$$

$$\hookrightarrow \text{ Stuck between } x^{(1)} \text{ and } x^{(2)} \text{ forever. Decrease learning rate (adaptive step size). }$$

Shpresim Sadiku

Matrix Calculus

 $\blacksquare f: \mathbb{R}^{m \times n} \to \mathbb{R}$

• **Gradient** of f (w.r.t. $A \in \mathbb{R}^{m \times n}$) is the matrix of partial derivatives

$$\nabla_A f(A) \in \mathbb{R}^{m \times n} = \begin{bmatrix} \frac{\partial f(A)}{\partial A_{11}} & \frac{\partial f(A)}{\partial A_{12}} & \cdots & \frac{\partial f(A)}{\partial A_{1n}} \\ \frac{\partial f(A)}{\partial A_{21}} & \frac{\partial f(A)}{\partial A_{22}} & \cdots & \frac{\partial f(A)}{\partial A_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f(A)}{\partial A_{m1}} & \frac{\partial f(A)}{\partial A_{m2}} & \cdots & \frac{\partial f(A)}{\partial A_{mn}} \end{bmatrix}$$

- In general $(\nabla_A f(A))_{ij} = \frac{\partial f(A)}{\partial A_{ij}}$
- If A is a vector $x \in \mathbb{R}^n$

$$\nabla_x f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{bmatrix}$$

• Note the size of $\nabla_A f(A)$ is always same as the size of A

- Gradient of a function is *only* defined if the function is real-valued
 - **E.g.** cannot take the gradient of $Ax, A \in \mathbb{R}^{n \times n}$ wrt x

Matrix Calculus Exercise

Exercise

Suppose
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$
 and the function $f : \mathbb{R}^{2 \times 2} \to \mathbb{R}$ is given by
$$f(A) = \frac{3}{2}A_{11} + 5A_{12}^2 + A_{21}A_{22}$$
Find $\nabla_A f(A)$

Solution

Use
$$(\nabla_A f(A))_{ij} = \frac{\partial f(A)}{\partial A_{ij}}$$
 to find

$$\nabla_A f(A) = \begin{bmatrix} \frac{3}{2} & 10A_{12} \\ A_{22} & A_{21} \end{bmatrix}$$

Shpresim Sadiku

Matrix Calculus Exercise

Exercise

Suppose
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$
 and the function $f : \mathbb{R}^{2 \times 2} \to \mathbb{R}$ is given by
$$f(A) = \frac{3}{2}A_{11} + 5A_{12}^2 + A_{21}A_{22}$$

Find $\nabla_A f(A)$

Solution

Use $(\nabla_A f(A))_{ij} = \frac{\partial f(A)}{\partial A_{ij}}$ to find $\nabla_A f(A) = \begin{bmatrix} \frac{3}{2} & 10A_{12} \\ A_{22} & A_{21} \end{bmatrix}$

Shpresim Sadiku

Properties

- $\nabla_x (f(x) + g(x)) = \nabla_x f(x) + \nabla_x g(x)$
- $\bullet t \in \mathbb{R}, \quad \nabla_x(tf(x)) = t\nabla_x f(x)$

Working with gradients can be tricky (!)

- $A \in \mathbb{R}^{m \times n}$ matrix of fixed coefficients
- $\blacksquare \ b \in \mathbb{R}^m$ vector of fixed coefficients
- $f: \mathbb{R}^m \to \mathbb{R}$ defined by $f(z) = z^T z$ such that $\nabla_z f(z) = 2z$

How do we express $\nabla f(Ax)$?

Recall $\nabla_z f(z) = 2z$. Interpret $\nabla f(Ax)$ as evaluating the gradient at point Ax

$$\nabla f(Ax) = 2(Ax) = 2Ax \in \mathbb{R}^m$$

2 Interpret f(Ax) as a function of input variables x. If g(x) = f(Ax) then

$$\nabla f(Ax) = \nabla_x g(x) \in \mathbb{R}^n$$

- Make explicit variables which we are differentiating with respect to
- □ ∇_zf(Ax) Differentiate f wrt its arguments z then substituting Ax
 ⊇ ∇_xf(Ax) Differentiate composite g(x) = f(Ax) wrt x directly

Shpresim Sadiku

Calculus for Data Science

The Hessian

- $\blacksquare f: \mathbb{R}^n \to \mathbb{R}$
- Hessian matrix wrt $x, \nabla_x^2 f(x)$ or H, is $n \times n$ matrix of partial derivatives

$$\nabla_x^2 f(x) \in \mathbb{R}^{n \times n} = \begin{bmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2} \end{bmatrix}$$

• In general $\nabla_x^2 f(x) \in \mathbb{R}^{n \times n}$ with

$$(\nabla_x^2 f(x))_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}$$

Note Hessian is symmetric since

$$\frac{\partial^2 f(x)}{\partial x_i \partial x_j} = \frac{\partial^2 f(x)}{\partial x_j \partial x_i}$$

• Hessian defined only when f(x) is real-valued

Shpresim Sadiku

The Hessian

- Gradient is the analogue of the first derivative for functions of vectors
- Hessian is the analogue of the second derivative

Caveats to keep in mind

I For real-valued functions of one variable $f : \mathbb{R} \to \mathbb{R}$, the second derivative is the derivative of the first derivative

$$\frac{\partial^2 f(x)}{\partial x^2} = \frac{\partial}{\partial x} \frac{\partial}{\partial x} f(x)$$

 \blacksquare For functions of a vector, the gradient of the function is a vector, and we cannot take the gradient of a vector

$$\nabla_x \nabla_x f(x) = \nabla_x \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{bmatrix} \quad (!)$$

The Hessian

- Hessian is not the gradient of the gradient
- *Almost true* in the following sense
 - Look at i^{th} entry of the gradient $(\nabla_x f(x))_i = \partial f(x) / \partial x_i$
 - \blacksquare Take the gradient wrt x

$$\nabla_{x} \frac{\partial f(x)}{\partial x_{i}} = \begin{bmatrix} \frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{1}} \\ \frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{2}} \\ \vdots \\ \frac{\partial f(x)}{\partial x_{i} \partial x_{n}} \end{bmatrix}$$

• which is i^{th} column (or row) of Hessian. Hence

$$\nabla_x^2 f(x) = \begin{bmatrix} \nabla_x (\nabla_x f(x))_1 & \nabla_x (\nabla_x f(x))_2 & \dots & \nabla_x (\nabla_x f(x))_n \end{bmatrix}$$
$$\nabla_x^2 f(x) = \nabla_x (\nabla_x f(x))^T$$

Gradients of Linear Functions

• $x \in \mathbb{R}^n$, $f(x) = b^T x$ for known $b \in \mathbb{R}^n$

$$f(x) = \sum_{i=1}^{n} b_i x_i$$
$$\frac{\partial f(x)}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^{n} b_i x_i = b_k$$

$$\nabla_x b^T x = b \partial/(\partial x)ax = a$$
 (single variable calculus)

Gradients of Quadratic Functions

• Quadratic function
$$f(x) = x^T A x$$
 for $A \in \mathbb{S}^n$

$$f(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} x_i x_j$$

$$\frac{\partial f(x)}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} x_i x_j$$

$$= \frac{\partial}{\partial x_k} \left[\sum_{i \neq k} \sum_{j \neq k} A_{ij} x_i x_j + \sum_{i \neq k} A_{ik} x_i x_k + \sum_{j \neq k} A_{kj} x_k x_j + A_{kk} x_k^2 \right]$$

$$= \sum_{i \neq k} A_{ij} x_i + \sum_{j \neq k} A_{kj} x_j + 2A_{kk} x_k$$

$$= \sum_{i=1}^{n} A_{ik} x_i + \sum_{j=1}^{n} A_{kj} x_j$$

$$= 2 \sum_{i=1}^{n} A_{ki} x_i$$

$$= k^{th} \text{ entry of } \nabla_x f(x) \text{ is inner product of } k^{th} \text{ row of } A \text{ and } x$$

$$\nabla_x x^T A x = 2A x$$

$$\partial/(\partial x) a x^2 = 2a x \quad \text{(single variable calculus)}$$

Shpresim Sadiku

Calculus for Data Science

Hessians of Quadratic Functions

• Quadratic function $f(x) = x^T A x$ for $A \in \mathbb{S}^n$

$$\frac{\partial^2 f(x)}{\partial x_k \partial x_l} = \frac{\partial}{\partial x_k} \left[\frac{\partial f(x)}{\partial x_l} \right]$$
$$= \frac{\partial}{\partial x_k} \left[2 \sum_{i=1}^n A_{li} x_i \right]$$
$$= 2A_{lk}$$
$$= 2A_{kl}$$

•
$$\nabla_x^2 x^T A x = 2A$$

• $\partial^2 / (\partial x^2) a x^2 = 2a$ (single variable calculus)

Recap

 $\nabla_x b^T x = b$ $\nabla_x x^T A x = 2Ax \quad \text{(if } A \text{ symmetric)}$ $\nabla_x^2 x^T A x = 2A \quad \text{(if } A \text{ symmetric)}$

Least Squares

 $\blacksquare \ A \in \mathbb{R}^{m \times n}$ of full rank

■ $b \in \mathbb{R}^m$ such that $b \notin \mathcal{R}(A)$ \hookrightarrow Not able to find a vector $x \in \mathbb{R}^n$ such that Ax = b \hookrightarrow Find a vector x such that Ax is as close as possible to b, measured by Euclidean norm $||Ax - b||_2^2$

$$||Ax - b||_{2}^{2} = (Ax - b)^{T}(Ax - b)$$

= $x^{T}A^{T}Ax - 2b^{T}Ax + b^{T}b$

 \blacksquare Take gradient wrt x

$$\nabla_x (x^T A^T A x - 2b^T A x + b^T b) = \nabla_x x^T A^T A x - \nabla_x 2b^T A x + \nabla_x b^T b$$
$$= 2A^T A x - 2A^T b$$

• Set to zero and solve for x

$$\boldsymbol{x} = (A^TA)^{-1}A^T\boldsymbol{b}$$

Eigenvalues as Optimization

Equality constrained optimization problem

$$\max_{x \in \mathbb{R}^n} x^T A x \quad \text{subject to } \|x\|_2^2 = 1$$

Lagrangian

$$\mathcal{L}(x,\lambda) = x^T A x - \lambda x^T x$$

 \blacksquare λ - Lagrange multiplier associated with equality constraint

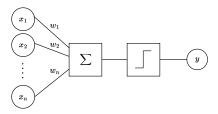
For x^* to be an optimal point, the gradient of the Lagrangian has to be zero at x^*

$$\nabla_x \mathcal{L}(x, \lambda) = \nabla_x (x^T A x - \lambda x^T x)$$
$$= 2A^T x - 2\lambda x$$
$$= 0$$

- Linear equation $Ax = \lambda x$
- The only points that can possible maximize (or minimize) $x^T A x$ assuming $x^T x = 1$ are eigenvectors of A

The Perceptron

Structure:



Weighted sum of input features

$$z = \sum_{i=1}^{n} w_i x_i + b$$
$$= \mathbf{w}^T \mathbf{x} + b$$

 \blacksquare Followed by the sign function

 $y = \operatorname{sign}(z)$

Learning task: Given input data

 $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(m)} \in \mathbb{R}^n$

of corresponding labels $t^{(1)},t^{(2)},...,t^{(m)}\in\{-1,1\}$

 \blacksquare Goal is to learn a collection of parameters (\mathbf{w}, b) such that

$$\min_{\mathbf{w},b} \sum_{j=1}^{m} \mathcal{L}(t^j, \mathbf{w}^T \mathbf{x}^j + b)$$

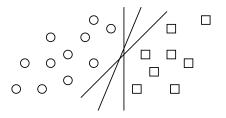
\mathcal{L}(\mathbf{w}, b) denotes the error function

The Perceptron

Predictions of the perceptron for each datapoint

$$z^{(j)} = \mathbf{w}^T \mathbf{x}^{(j)} + b$$

$$y^{(j)} = \operatorname{sign}(z^{(j)})$$



Question:

Can all the points be correctly classified

$$\exists (\mathbf{w},b): y^{(j)} = t^{(j)}, \forall_{j=1}^m?$$

Shpresim Sadiku

Calculus for Data Science

The Perceptron Algorithm

Perceptron Algorithm

Initialize
$$\mathbf{w} = \mathbf{0}$$
 and $b = 0$

- Repeat for j = 1, ..., m
 - If $\mathbf{x}^{(j)}$ is correctly classified $(y^{(j)} = t^{(j)})$, continue
 - If $\mathbf{x}^{(j)}$ is wrongly classified $(y^{(j)} \neq t^{(j)})$, update

$$\mathbf{w} \leftarrow \mathbf{w} + \eta \cdot \mathbf{x}^{(j)} t^{(j)}$$
$$b \leftarrow b + \eta \cdot t^{(j)}$$

for some learning rate η

Until all examples are classified correctly

Optimization View of Perceptron

Proposition

The perceptron is equivalent to the gradient descent of the so-called ${\it Hinge\ Loss}$

$$\mathcal{L}(\mathbf{w}, b) = \frac{1}{m} \sum_{j=1}^{m} \underbrace{\max(0, -z^{(j)}t^{(j)})}_{\mathcal{L}_j(\mathbf{w}, b)}$$

Proof.

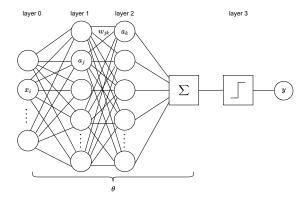
$$\begin{split} \mathbf{w} &- \eta \frac{\partial \mathcal{L}_j}{\partial \mathbf{w}} &= \mathbf{w} - \eta \cdot \mathbf{1}_{-z^{(j)}t^{(j)} > 0} \cdot \left(-\frac{\partial z^{(j)}}{\partial \mathbf{w}} t^{(j)} \right) \\ &= \mathbf{w} - \eta \cdot \mathbf{1}_{y^{(j)} \neq t^{(j)}} \cdot \left(-\frac{\partial z^{(j)}}{\partial \mathbf{w}} t^{(j)} \right) \\ &= \mathbf{w} + \eta \cdot \mathbf{1}_{y^{(j)} \neq t^{(j)}} \cdot \mathbf{x}^{(j)} t^{(j)} \end{split}$$

• Proceed similarly for the parameter b

Shpresim Sadiku

Calculus for Data Science

From Perceptron to Deep Neural Networks



Idea:

Stack multiple perceptrons together to generalize the formulation where z is the output of a multilayer neural network with parameters θ

 \hookrightarrow Updated error function $\mathcal{L}(\theta)$

Numerical Differentiation

Question:

How hard is it to compute the gradient of the error function w.r.t. the model parameters

$$\theta = \theta - \eta \frac{\partial \mathcal{L}}{\partial \theta}$$
 ?

Idea:

Use the definition of the derivative

$$\forall_t : \frac{\partial \mathcal{L}}{\partial \theta_t} = \lim_{\varepsilon \to 0} \frac{\mathcal{L}(\theta + \varepsilon \cdot \delta_t) - \mathcal{L}(\theta)}{\varepsilon}$$

• δ_t denotes an indicator vector for the parameter t

Properties:

- \blacksquare Applicable to any error function $\mathcal L$
- Re-evaluate the function as many times as there are parameters (→ slow for a large number of parameters)
- Neural networks typically have between 10^3 and 10^9 parameters (\hookrightarrow numerical differentiation unfeasible)

■ Need to use high-precision due to small *e* and numerator Shpresim Sadiku

Calculus for Data Science

Non-convex error function

Problems:

- $\mathcal{L}(\theta)$ is non-convex and non-linear
- For complex functions, the computation of $\nabla_{\theta} \mathcal{L}$ is tricky to be done by hand

Question:

Can we do this automatically?

 A general rule to find the weights θ was not discovered until 1974 (Paul Werbos) / 1985 (LeCun) / 1986 (Rumelhart et al.)

Idea:

Need to compute the gradient $\partial \mathcal{L} / \partial w_{jk}$

 \hookrightarrow Compute the error at the output, and propagate that back to the neurons in the earlier layers

 \hookrightarrow Compute the gradient

Recall the Chain Rule

Assume some parameter of interest θ_q and the output of the network z are linked through a sequence of functions

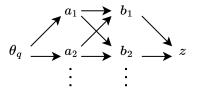
$$\theta_q \longrightarrow a \longrightarrow b \longrightarrow z$$

• Applying the chain rule for derivatives, the derivative w.r.t. the parameter of interest is the product of local derivatives along the path connecting θ_q to z

$$\frac{\partial z}{\partial \theta_q} = \frac{\partial a}{\partial \theta_q} \frac{\partial b}{\partial a} \frac{\partial z}{\partial b}$$

The Multivariate Chain Rule

The parameter of interest may be linked to the output of the network via multiple paths, formed by all neurons in layers between θ_q and z

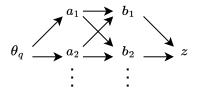


• Multivariate scenario \Rightarrow the chain rule enumerates all the paths between θ_q and z

$$rac{\partial z}{\partial heta_q} = \sum_i \sum_j rac{\partial a_i}{\partial heta_q} rac{\partial b_j}{\partial a_j} rac{\partial z}{\partial b_j}$$

where \sum_i and \sum_j run over all indices of the nodes in the corresponding layers Nested sum - complexity grows exponentially with the number of layers

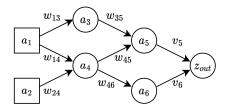
Factor Structure in the Multivariate Chain Rule



- Re-write the computation perform the summing operation incrementally
- Re-use intermediate computation for different paths and parameters for which we would like to compute the gradient

$$\frac{\partial z}{\partial \theta_q} = \sum_i \frac{\partial a_i}{\partial \theta_q} \sum_j \frac{\partial b_j}{\partial a_j} \underbrace{\frac{\partial z}{\partial b_j}}_{\delta_j} \underbrace{\frac{\partial z}{\delta_j}}_{\delta_j}$$

■ The resulting gradient computation w.r.t. all parameters in the network is linear with the size of the network (⇒ fast!)



t)

Forward pass:

 $a_1 = x_1$

$$a_2 = x_2$$

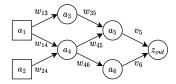
$$a_3 = \tanh(z_3)$$

$$a_4 = \tanh(z_4)$$

$$a_5 = \tanh(z_5)$$

$$a_6 = \tanh(z_6)$$

$$\begin{array}{rcrcrcrc} z_3 & = & a_1w_{13} \\ z_4 & = & a_1w_{14} + a_2w_{24} \\ z_5 & = & a_3w_{35} + a_4w_{45} \\ z_6 & = & a_4w_{46} \\ z_{out} & = & a_5v_5 + a_6v_6 \\ \mathcal{L} & = & \max(0, -z_{out} + z_{out}) \end{array}$$



		a_1	=	x_1
=	a_1w_{13}	a_2	=	x_2
=	$a_1w_{14} + a_2w_{24}$	a_3	=	$ anh(z_3)$
=	$a_3w_{35} + a_4w_{45}$	a_4	=	$ anh(z_4)$
=	a_4w_{46}	a_5	=	$\tanh(z_5)$
=	$a_5v_5 + a_6v_6$	a_6	=	$ anh(z_6)$
=	$\max(0,-z_{out}\cdot t)$			

Backward pass:

$$\begin{split} \delta_{out} &= \quad \frac{\partial \mathcal{L}}{\partial z_{out}} = \mathbf{1}_{\{-z_{out} \cdot t > 0\}} \cdot (-t) \\ & \quad \frac{\partial \mathcal{L}}{\partial v_6} = \frac{\partial z_{out}}{\partial v_6} \frac{\partial \mathcal{L}}{\partial z_{out}} = a_6 \cdot \delta_{out} \\ & \quad \frac{\partial \mathcal{L}}{\partial v_5} = \frac{\partial z_{out}}{\partial v_5} \frac{\partial \mathcal{L}}{\partial z_{out}} = a_5 \cdot \delta_{out} \end{split}$$

 z_3

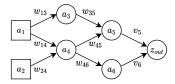
 z_{4}

 z_5

 z_6

L

 z_{out}



		a_1	=	x_1
=	a_1w_{13}	a_2	=	x_2
=	$a_1w_{14} + a_2w_{24}$	a_3	=	$ anh(z_3)$
=	$a_3w_{35} + a_4w_{45}$	a_4	=	$ anh(z_4)$
=	a_4w_{46}	a_5	=	$\tanh(z_5)$
=	$a_5v_5 + a_6v_6$	a_6	=	$ anh(z_6)$
=	$\max(0,-z_{out}\cdot t)$			

Backward pass:

$$\begin{split} \delta_{out} &= \frac{\partial \mathcal{L}}{\partial z_{out}} = \mathbf{1}_{\{-z_{out} \cdot t > 0\}} \cdot (-t) \\ \delta_6 &= \frac{\partial \mathcal{L}}{\partial a_6} = \frac{\partial z_{out}}{\partial a_6} \frac{\partial \mathcal{L}}{\partial z_{out}} = v_6 \cdot \delta_{out} \\ \delta_5 &= \frac{\partial \mathcal{L}}{\partial a_5} = \frac{\partial z_{out}}{\partial a_5} \frac{\partial \mathcal{L}}{\partial z_{out}} = v_5 \cdot \delta_{out} \end{split}$$

 z_3

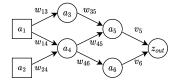
 z_{4}

 z_5

 z_6

L

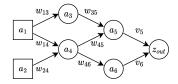
 z_{out}



			a_1	=	x_1
z_3	=	a_1w_{13}	a_2	=	x_2
z_4	=	$a_1w_{14} + a_2w_{24}$	a_3	=	$\tanh(z_3)$
z_5	=	$a_3w_{35} + a_4w_{45}$	a_4	=	$ anh(z_4)$
z_6	=	a_4w_{46}	a_5	=	$\tanh(z_5)$
zout	=	$a_5v_5 + a_6v_6$	a_6	=	$\tanh{(z_6)}$
L	=	$\max(0, -z_{out} \cdot t)$			

Backward pass:

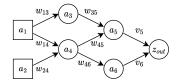
$$\begin{split} \delta_{6} &= \frac{\partial \mathcal{L}}{\partial a_{6}} = \frac{\partial z_{out}}{\partial a_{6}} \frac{\partial \mathcal{L}}{\partial z_{out}} = v_{6} \cdot \delta_{out} \\ \delta_{5} &= \frac{\partial \mathcal{L}}{\partial a_{5}} = \frac{\partial z_{out}}{\partial a_{5}} \frac{\partial \mathcal{L}}{\partial z_{out}} = v_{5} \cdot \delta_{out} \\ \frac{\partial \mathcal{L}}{\partial w_{46}} &= \frac{\partial z_{6}}{\partial w_{46}} \frac{\partial a_{6}}{\partial a_{6}} \frac{\partial \mathcal{L}}{\partial a_{6}} = a_{4} \cdot \tanh'(z_{6}) \cdot \delta_{6} \\ \frac{\partial \mathcal{L}}{\partial w_{45}} &= \frac{\partial z_{5}}{\partial w_{45}} \frac{\partial a_{5}}{\partial z_{5}} \frac{\partial \mathcal{L}}{\partial a_{5}} = a_{4} \cdot \tanh'(z_{5}) \cdot \delta_{5} \\ \frac{\partial \mathcal{L}}{\partial w_{35}} &= \frac{\partial z_{5}}{\partial w_{35}} \frac{\partial a_{5}}{\partial z_{5}} \frac{\partial \mathcal{L}}{\partial a_{3}} = a_{5} \cdot \tanh'(z_{5}) \cdot \delta_{5} \end{split}$$



			a_1	=	x_1
z_3	=	a_1w_{13}	a_2	=	x_2
z_4	=	$a_1w_{14} + a_2w_{24}$	a_3	=	$\tanh(z_3)$
z_5	=	$a_3w_{35} + a_4w_{45}$	a_4	=	$ anh(z_4)$
z_6	=	a_4w_{46}	a_5	=	$\tanh(z_5)$
zout	=	$a_5v_5 + a_6v_6$	a_6	=	$ anh(z_6)$
L	=	$\max(0, -z_{out} \cdot t)$			

Backward pass:

$$\begin{split} \delta_{6} &= \frac{\partial \mathcal{L}}{\partial a_{6}} = \frac{\partial z_{out}}{\partial a_{6}} \frac{\partial \mathcal{L}}{\partial z_{out}} = v_{6} \cdot \delta_{out} \\ \delta_{5} &= \frac{\partial \mathcal{L}}{\partial a_{5}} = \frac{\partial z_{out}}{\partial a_{5}} \frac{\partial \mathcal{L}}{\partial z_{out}} = v_{5} \cdot \delta_{out} \\ \delta_{4} &= \frac{\partial \mathcal{L}}{\partial a_{4}} = \frac{\partial z_{6}}{\partial a_{4}} \frac{\partial a_{6}}{\partial z_{6}} \frac{\partial \mathcal{L}}{\partial a_{6}} + \frac{\partial z_{5}}{\partial a_{4}} \frac{\partial a_{5}}{\partial z_{5}} \frac{\partial \mathcal{L}}{\partial a_{5}} = w_{46} \cdot \tanh'(z_{6}) \cdot \delta_{6} + w_{45} \cdot \tanh'(z_{5}) \cdot \delta_{5} \\ \delta_{3} &= \frac{\partial \mathcal{L}}{\partial a_{3}} = \frac{\partial z_{5}}{\partial a_{3}} \frac{\partial a_{5}}{\partial z_{5}} \frac{\partial \mathcal{L}}{\partial a_{5}} = w_{35} \cdot \tanh'(z_{5}) \cdot \delta_{5} \end{split}$$



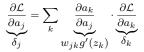
			a_1	=	x_1
z_3	=	a_1w_{13}	a_2	=	x_2
z_4	=	$a_1w_{14} + a_2w_{24}$	a_3	=	$ anh(z_3)$
z_5	=	$a_3w_{35} + a_4w_{45}$	a_4	=	$ anh(z_4)$
z_6	=	a_4w_{46}	a_5	=	$ anh(z_5)$
zout	=	$a_5v_5 + a_6v_6$	a_6	=	$ anh(z_6)$
L	=	$\max(0, -z_{out} \cdot t)$			

Backward pass:

$$\begin{split} \delta_{4} &= \frac{\partial \mathcal{L}}{\partial a_{4}} = \frac{\partial z_{6}}{\partial a_{4}} \frac{\partial a_{6}}{\partial z_{6}} \frac{\partial \mathcal{L}}{\partial a_{6}} + \frac{\partial z_{5}}{\partial a_{4}} \frac{\partial a_{5}}{\partial z_{5}} \frac{\partial \mathcal{L}}{\partial a_{5}} = w_{46} \cdot \tanh'(z_{6}) \cdot \delta_{6} + w_{45} \cdot \tanh'(z_{5}) \cdot \delta_{5} \\ \delta_{3} &= \frac{\partial \mathcal{L}}{\partial a_{3}} = \frac{\partial z_{5}}{\partial a_{3}} \frac{\partial a_{5}}{\partial z_{5}} \frac{\partial \mathcal{L}}{\partial a_{5}} = w_{35} \cdot \tanh'(z_{5}) \cdot \delta_{5} \\ \frac{\partial \mathcal{L}}{\partial w_{24}} &= \frac{\partial z_{4}}{\partial w_{24}} \frac{\partial a_{4}}{\partial z_{4}} \frac{\partial \mathcal{L}}{\partial a_{4}} = a_{2} \cdot \tanh'(z_{4}) \cdot \delta_{4} \\ \frac{\partial \mathcal{L}}{\partial w_{14}} &= \frac{\partial z_{3}}{\partial w_{13}} \frac{\partial a_{4}}{\partial z_{3}} \frac{\partial \mathcal{L}}{\partial a_{3}} = a_{1} \cdot \tanh'(z_{3}) \cdot \delta_{3} \end{split}$$

Formalization for a Standard Neural Network

Propagate the gradient of the error from layer to layer using the chain rule



Extract gradients w.r.t. parameters at each layer as

$$\frac{\partial \mathcal{L}}{\partial w_{jk}} = \sum_{k} \underbrace{\frac{\partial a_{k}}{\partial w_{jk}}}_{a_{j}g'(z_{k})} \cdot \underbrace{\frac{\partial \mathcal{L}}{\partial a_{k}}}_{\delta_{k}}$$

Re-write equations as matrix-vector products

$$\begin{split} \delta^{(l-1)} &= W^{(l-1,l)} \cdot (g'(\mathbf{z}^{(l)}) \odot \delta^{(l)}) \\ \frac{\partial \mathcal{L}}{\partial W^{(l-1,l)}} &= \mathbf{a} \cdot (g'(\mathbf{z}^{(l)}) \odot \delta^{(l)})^T \end{split}$$

Vanishing gradient

In general

 $\partial \mathcal{L} / \partial W^{(l-1,l)} \gg \partial \mathcal{L} / \partial W^{(l-2,l-1)}$

 \Rightarrow the more left you get in the network, the more the gradient vanishes

• tanh has gradients in the range (0, 1] \Rightarrow in an *n*-layer network the gradient decreases exponentially with *n*

Ways to circumvent vanishing gradients

- Use many labeled data (e.g., well possible for images)
- Train "longer" (possible with GPUs)
- Better weight initialization (e.g., Xavier/Glorot)
- Regularize with "dropout"
- Other activation functions: ReLU

Choice of Nonlinear Activation Function

Choose the nonlinear function such that

- Its gradient is defined (almost) everywhere
- A significant portion of the input domain has a non-zero gradient
- Its gradient is informative, i.e., indicate decrease/increase of the activation function

Commonly used activation functions:

- **Sigmoid** $g(z) = \exp(z)/(1 + \exp(z))$
- tanh g(z) = tanh(z)
- $\blacksquare ReLU \quad g(z) = \max(0, z)$

Problematic activation functions:

•
$$g(z) = \max(0, z - 100)$$

• $g(z) = 1_{z>0}$
• $g(z) = \sin(100 \cdot z)$

Automatic Differentiation

- Automatically generate backpropagation equations from the forward equations
- Automatic differentiation widely available in deep learning libraries (PyTorch, Tensorflow, JAX, etc.)

Consequences:

- \blacksquare No need to do backpropagation, just program the forward pass \hookrightarrow backward pass comes for free
- Motivated the development of neural networks that are way more complex, and with much more heterogeneous structures (e.g. ResNet, Yolo, transformers, etc.)
- In few cases, it is still useful to express the gradient analytically (e.g. to analyze theoretically the stability of a gradient descent procedure)

Training Neural Networks

Basic gradient descent algorithm

- \blacksquare Initialize θ at random
- \blacksquare Repeat for T steps
 - Compute the forward pass
 - Use backpropagation to extract $\partial \mathcal{L} / \partial \theta$
 - Perform a gradient step

$$\theta = \theta - \gamma \frac{\partial \mathcal{L}}{\partial \theta}$$

for some learning rate γ

Summary

- Gradient descent to minimize the error of a classifier (e.g. Perceptron, neural network + backpropagation)
- Error backpropagation provides a computationally efficient way of computing the gradient compared to the formula for numerical differentiation
- Error backpropagation is a direct application of the multivariate chain rule, where the different terms can be factored due to the structure of the neural network graph
- Use certain techniques to circumvent vanishing gradients
- No need to program error backpropagation manually, use automatic differentiation techniques instead

THANK YOU!

Slides available at:

www.shpresimsadiku.com

Check related information on Twitter at:

@shpresimsadiku

Shpresim Sadiku

Calculus for Data Science