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Why Data Science?
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Self-driving cars and robotics
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Typical problems in Data Science

Image Compression

Noise Reduction
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Natural Language Processing
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Prerequisites for Data Science

Mathematical background in
Linear Algebra (August 16)
Calculus (Today)
Statistics and Probability Theory (August 18)
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Outline
Variables and Functions
Limits
Derivatives
Integrals
Gradient Descent
Matrix Calculus
The Hessian
Least Squares
Eigenvalues as Optimization
The Perceptron Algorithm
Perceptron via gradient descent
Gradients of a Neural Networks
Numerical gradient computation
Backpropagation algorithm

Chain rule and multivariate chain rule
Backpropagation through example
Formalization of backpropagation
Vanishing gradients
Choice of nonlinear activation functions
Automatic differentiation
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Numbers

Natural numbers - 1, 2, 3, 4, 5...
Whole numbers - introduce 0 for numbers greater than 9 such as 10, 1000, 1090

Integers ...,−2,−1, 0, 1, 2, ...

Rational numbers - any number that can be expressed as a fraction 2
3
, 687
100

, 2

Note all finite decimals and integers are also rational

Irrational numbers - cannot be expressed as a fraction π,
√
2, e

Infinite number of decimal digits (3.141592653589793238462...)
Prove that

√
2 is irrational (!)

Real numbers - rational and irrational numbers
Complex and imaginary numbers - encountered when taking square root of a
negative number

In data science for e.g. matrix decomposition
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Order of Operations

1 Parentheses
2 Exponents
3 Multiplication
4 Division
5 Addition
6 Subtraction

2×
(3 + 2)2

5
− 4

2×
(5)2

5
− 4

2×
25

5
− 4

50

5
− 4

10− 4

6
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Variables and Functions

A variable is a named placeholder for an unspecified or unknown number
Denoted by α, β, θ

Can represent any real number, can do math operations with it

Functions define relationships between two or more variables
Take input variables, plug them into an expression, and result in an output variable

y = 2x+ 1

x 2x+1 y

0 2(0)+1 1
1 2(1)+1 3
2 2(2)+1 5
3 2(3)+1 7

Can also be expressed as f(x) = 2x+ 1
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Continuous Functions

Making steps of x infinitely small then y = 2x+ 1 is a continuous function
For every possible value of x there is a value of y

Exercises
Plot f(x) = x2 + 1

Plot f(x, y) = 2x+ 3y
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Logarithms

Logarithm is a math function that finds a power for a specific number and base
Applications in measuring earthquakes, managing volume on your stereo
Used in logistic regression

E.g. 2x = 8 or x = log2 8 = 3

In general ax = b ⇐⇒ loga b = x
Default base in earthquake measurements is 10
Default base in data science and Python is e

Properties
log(a× b) = log(a) + log(b)
log( a

b ) = log(a)− log(b)
log(an) = n× log(a)
log(1) = 0

log(x−1) = log( 1
x ) = − log(x)
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Euler’s Number e

e is resulting value of (1 + 1
n
)n as n gets bigger and bigger

(
1 +

1

100

)100

= 2.79481382942(
1 +

1

1000

)1000

= 2.71692393224(
1 +

1

10000

)10000

= 2.71814592682(
1 +

1

10000000

)10000000

= 2.71828169413

As n gets larger it converges approximately on 2.71828 which gives e
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Limits

e - increasing input variable the output keeps approaching a value but never reaches it
As x increases forever, f(x) gets closer to 0 but never reaches it

lim
x→∞

1

x
= 0

limn→∞
(
1 + 1

n

)n
= e = 2.71828169413
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Derivatives

Derivative - gives the slope of a function
Measures the rate of change at any point in a function
Derivatives are used in ML algorithms, e.g. gradient descent

When slope is 0, we are at the minimum or maximum of an output variable

f(x) = x2

Measure steepness at any point in curve,
visualize with a tangent line
x = 2 and x = 2.1

f(x) = 4 and f(x) = 4.41

Calculate slope m between two points

m =
y2 − y1

x2 − x1
=

4.41− 4.0

2.1− 2.0
= 4.1

If x2 = 2.00001 then m = 4.00004 very
close to actual slope of 4
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Derivatives

Exponential function like f(x) = x2 - derivative will make exponent a multiplier and
decrement exponent by 1

d

dx
f(x) =

d

dx
x2 = 2x

d

dx
f(2) = 2(2) = 4

Use Python library SymPy to calculate derivatives
Formal definition

f(x)
′
= lim

s→0

(x+ s)2 − x2

(x+ s)− x

lims→∞
(2+s)2−22

(2+s)−2
= 4
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Partial Derivatives

Slopes wrt multiple variables in several directions
For each given variable, assume other variables are constant
f(x, y) = 2x3 + 3y3

d

dx
2x3 + 3y3 = 6x2

d

dy
2x3 + 3y3 = 9y2

For (x, y) values (1, 2), slope wrt x is 6(1) = 6 and wrt y is 9(2)2 = 36

Forever approaching step size s to 0 but never reaching it (otherwise no line), we
converge on a slope of 4
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The Chain Rule

y = x2 + 1, z = y3 − 2

1 Substitute first function y into second function z

z = (x2 + 1)3 − 2

dz

dx
((x2 + 1)3 − 2) = 6x(x2 + 1)2

2 Take derivatives of y and z separately, then multiply them
dy

dx
(x2 + 1) = 2x

dz

dy
(y3 − 2) = 3y1

dz

dx
= (2x)(3y2) = 6xy2

Substitute y

dz

dx
= 6xy

2
= 6x(x

2
+ 1)

2

The chain rule
dz

dx
=

dz

dy
×

dy

dx
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Integrals

Opposite of derivative is integral
Finds area under the curve for a given range
Area for a range under a straight line is easy

f(x) = 2x

Measure area under the line between 2
and 3

Area of a trapezoid (4+6)
2

× 1 = 5
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Integrals

What if the function is more difficult?
E.g. f(x) = x2 + 1

Curviness does not give a clean geometric
formula to find the area
Pack five rectangles of equal length un-
der the curve, where height of each one
extends from x-axis to where midpoint
touches the curve
Rectangle area - length × width
The more rectangles the better the ap-
proximation

Increase/decrease smth toward infinity
to approach an actual value
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Integral approximation in Python

What happens if we use 1000 rectangles? What about 1000000?
We get more precision - 7.333333250000001 and 7.333333333333075

↪→ Converging to 7.333 (if a rational number its likely 22/3)
Use SymPy to perform integration
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Gradient Descent
Used heavily to solve optimization problems

min
x∈X

f(x)

where the domain X is a convex set
Update rule xt+1 = xt − τ∇f(xt), for a learning rate τ > 0
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Gradient Descent Exercise
Exercise
Given f(x1, x2) = 0.5x2

1 + x2
2 + 2x1 + x2 + cos(sin

√
π)

Compute the minimum (x∗
1, x

∗
2) of (x1, x2) analytically

Perform two steps of gradient descent on f(x1, x2) starting from point (x
(0)
1 , x

(0)
2 ) =

(0, 0) with learning rate τ = 1

Will the gradient descent procedure ever converge to the true minimum (x∗
1, x

∗
2)?

Solution

∇f(x1, x2) =

[
x1 + 2
2x2 + 1

]
!
=

[
0
0

]
=⇒

[
x∗
1

x∗
2

]
=

[
−2

−1/2

]
1st update

[
x
(1)
1

x
(1)
2

]
=

[
x
(0)
1

x
(0)
2

]
− τ

[
x
(0)
1 + 2

2x
(0)
2 + 1

]
=

[
0
0

]
− τ

[
0 + 2

2 · 0 + 1

]
=

[
−2
−1

]
2nd update

[
x
(2)
1

x
(2)
2

]
=

[
x
(1)
1

x
(1)
2

]
− τ

[
x
(1)
1 + 2

2x
(1)
2 + 1

]
=

[
−2
−1

]
− 1

[
0
−1

]
=

[
−2
0

]

3rd update

[
x
(3)
1

x
(3)
2

]
=

[
x
(2)
1

x
(2)
2

]
− τ

[
x
(2)
1 + 2

2x
(2)
2 + 1

]
=

[
−2
0

]
− 1

[
0
1

]
=

[
−2
−1

]
=

[
x
(1)
1

x
(1)
2

]
↪→ Stuck between x(1) and x(2) forever. Decrease learning rate (adaptive step size).
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Gradient Descent Exercise
Exercise
Given f(x1, x2) = 0.5x2

1 + x2
2 + 2x1 + x2 + cos(sin

√
π)

Compute the minimum (x∗
1, x

∗
2) of (x1, x2) analytically

Perform two steps of gradient descent on f(x1, x2) starting from point (x
(0)
1 , x

(0)
2 ) =

(0, 0) with learning rate τ = 1

Will the gradient descent procedure ever converge to the true minimum (x∗
1, x

∗
2)?
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∇f(x1, x2) =

[
x1 + 2
2x2 + 1

]
!
=

[
0
0

]
=⇒

[
x∗
1

x∗
2

]
=

[
−2

−1/2

]
1st update

[
x
(1)
1

x
(1)
2

]
=

[
x
(0)
1

x
(0)
2

]
− τ

[
x
(0)
1 + 2

2x
(0)
2 + 1

]
=

[
0
0

]
− τ

[
0 + 2

2 · 0 + 1

]
=

[
−2
−1

]
2nd update

[
x
(2)
1

x
(2)
2

]
=

[
x
(1)
1

x
(1)
2

]
− τ

[
x
(1)
1 + 2

2x
(1)
2 + 1

]
=

[
−2
−1

]
− 1

[
0
−1

]
=

[
−2
0

]

3rd update

[
x
(3)
1

x
(3)
2

]
=

[
x
(2)
1

x
(2)
2

]
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[
x
(2)
1 + 2

2x
(2)
2 + 1

]
=

[
−2
0

]
− 1

[
0
1

]
=

[
−2
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]
=
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x
(1)
1

x
(1)
2

]
↪→ Stuck between x(1) and x(2) forever. Decrease learning rate (adaptive step size).
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Matrix Calculus
f : Rm×n → R
Gradient of f (w.r.t. A ∈ Rm×n) is the matrix of partial derivatives

∇Af(A) ∈ Rm×n =


∂f(A)
∂A11

∂f(A)
∂A12

· · · ∂f(A)
∂A1n

∂f(A)
∂A21

∂f(A)
∂A22

· · · ∂f(A)
∂A2n

...
...

. . .
...

∂f(A)
∂Am1

∂f(A)
∂Am2

· · · ∂f(A)
∂Amn


In general (∇Af(A))ij =

∂f(A)
∂Aij

If A is a vector x ∈ Rn

∇xf(x) =


∂f(x)
∂x1

∂f(x)
∂x2

...
∂f(x)
∂xn


Note the size of ∇Af(A) is always same as the size of A
Gradient of a function is only defined if the function is real-valued

E.g. cannot take the gradient of Ax,A ∈ Rn×n wrt x
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Matrix Calculus Exercise

Exercise
Suppose A =

[
A11 A12

A21 A22

]
and the function f : R2×2 → R is given by

f(A) =
3

2
A11 + 5A2

12 +A21A22

Find ∇Af(A)

Solution
Use (∇Af(A))ij =

∂f(A)
∂Aij

to find

∇Af(A) =

[
3
2

10A12

A22 A21

]
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Properties
∇x(f(x) + g(x)) = ∇xf(x) +∇xg(x)

t ∈ R, ∇x(tf(x)) = t∇xf(x)

Working with gradients can be tricky (!)
A ∈ Rm×n matrix of fixed coefficients
b ∈ Rm vector of fixed coefficients
f : Rm → R defined by f(z) = zT z such that ∇zf(z) = 2z

How do we express ∇f(Ax)?

1 Recall ∇zf(z) = 2z. Interpret ∇f(Ax) as evaluating the gradient at point Ax

∇f(Ax) = 2(Ax) = 2Ax ∈ Rm

2 Interpret f(Ax) as a function of input variables x. If g(x) = f(Ax) then

∇f(Ax) = ∇xg(x) ∈ Rn

Make explicit variables which we are differentiating with respect to

1 ∇zf(Ax) - Differentiate f wrt its arguments z then substituting Ax

2 ∇xf(Ax) - Differentiate composite g(x) = f(Ax) wrt x directly
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The Hessian
f : Rn → R
Hessian matrix wrt x, ∇2

xf(x) or H, is n× n matrix of partial derivatives

∇2
xf(x) ∈ Rn×n =



∂2f(x)

∂x2
1

∂2f(x)
∂x1∂x2

. . .
∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)

∂x2
2

. . .
∂2f(x)
∂x2∂xn

...
...

. . .
...

∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

. . .
∂2f(x)

∂x2
n


In general ∇2

xf(x) ∈ Rn×n with

(∇2
xf(x))ij =

∂2f(x)

∂xi∂xj

Note Hessian is symmetric since

∂2f(x)

∂xi∂xj
=

∂2f(x)

∂xj∂xi

Hessian defined only when f(x) is real-valued
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The Hessian

Gradient is the analogue of the first derivative for functions of vectors
Hessian is the analogue of the second derivative

Caveats to keep in mind
1 For real-valued functions of one variable f : R → R, the second derivative is the

derivative of the first derivative

∂2f(x)

∂x2
=

∂

∂x

∂

∂x
f(x)

2 For functions of a vector, the gradient of the function is a vector, and we cannot take
the gradient of a vector

∇x∇xf(x) = ∇x


∂f(x)
∂x1

∂f(x)
∂x2

...
∂f(x)
∂xn

 (!)
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The Hessian

Hessian is not the gradient of the gradient
Almost true in the following sense

Look at ith entry of the gradient (∇xf(x))i = ∂f(x)/∂xi

Take the gradient wrt x

∇x
∂f(x)

∂xi

=



∂2f(x)
∂xi∂x1
∂2f(x)
∂xi∂x2

...
∂f(x)

∂xi∂xn


which is ith column (or row) of Hessian. Hence

∇2
xf(x) =

[
∇x(∇xf(x))1 ∇x(∇xf(x))2 . . . ∇x(∇xf(x))n

]
∇2

xf(x) = ∇x(∇xf(x))
T
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Gradients of Linear Functions

x ∈ Rn, f(x) = bT x for known b ∈ Rn

f(x) =
n∑

i=1

bixi

∂f(x)

∂xk
=

∂

∂xk

n∑
i=1

bixi = bk

∇xb
T x = b

∂/(∂x)ax = a (single variable calculus)
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Gradients of Quadratic Functions
Quadratic function f(x) = xTAx for A ∈ Sn

f(x) =
n∑

i=1

n∑
j=1

Aijxixj

∂f(x)

∂xk
=

∂

∂xk

n∑
i=1

n∑
j=1

Aijxixj

=
∂

∂xk

∑
i ̸=k

∑
j ̸=k

Aijxixj +
∑
i ̸=k

Aikxixk +
∑
j ̸=k

Akjxkxj +Akkx
2
k


=

∑
i̸=k

Aijxi +
∑
j ̸=k

Akjxj + 2Akkxk

=

n∑
i=1

Aikxi +
n∑

j=1

Akjxj

= 2
n∑

i=1

Akixi

kth entry of ∇xf(x) is inner product of kth row of A and x

∇xx
TAx = 2Ax

∂/(∂x)ax2 = 2ax (single variable calculus)
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Hessians of Quadratic Functions

Quadratic function f(x) = xTAx for A ∈ Sn

∂2f(x)

∂xk∂xl
=

∂

∂xk

[
∂f(x)
∂xl

]
=

∂

∂xk

[
2
∑n

i=1 Alixi

]
= 2Alk

= 2Akl

∇2
xx

TAx = 2A

∂2/(∂x2)ax2 = 2a (single variable calculus)

Recap
∇xbT x = b

∇xxTAx = 2Ax (if A symmetric)
∇2

xx
TAx = 2A (if A symmetric)
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Least Squares

A ∈ Rm×n of full rank
b ∈ Rm such that b /∈ R(A)
↪→ Not able to find a vector x ∈ Rn such that Ax = b
↪→ Find a vector x such that Ax is as close as possible to b, measured by Euclidean
norm ∥Ax− b∥22

∥Ax− b∥22 = (Ax− b)T (Ax− b)

= xTATAx− 2bTAx+ bT b

Take gradient wrt x

∇x(x
TATAx− 2bTAx+ bT b) = ∇xx

TATAx−∇x2b
TAx+∇xb

T b

= 2ATAx− 2AT b

Set to zero and solve for x

x = (ATA)−1AT b
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Eigenvalues as Optimization

Equality constrained optimization problem
maxx∈Rn xTAx subject to ∥x∥22 = 1

Lagrangian

L(x, λ) = xTAx− λxT x

λ - Lagrange multiplier associated with equality constraint

For x∗ to be an optimal point, the gradient of the Lagrangian has to be zero at x∗

∇xL(x, λ) = ∇x(x
TAx− λxT x)

= 2AT x− 2λx

= 0

Linear equation Ax = λx
The only points that can possible maximize (or minimize) xTAx assuming xT x = 1
are eigenvectors of A
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The Perceptron
Structure:

Conflict Chaos

Weighted sum of input features

z =
n∑

i=1

wixi + b

= wTx + b

Followed by the sign function

y = sign(z)

Learning task: Given input data

x(1),x(2), ...,x(m) ∈ Rn

of corresponding labels t(1), t(2), ..., t(m) ∈ {−1, 1}
Goal is to learn a collection of parameters (w, b) such that

min
w,b

m∑
j=1

L(tj ,wTxj + b)

L(w, b) denotes the error function
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The Perceptron

Predictions of the perceptron for each datapoint

z(j) = wTx(j) + b

y(j) = sign(z(j))

Question:
Can all the points be correctly classified

∃(w, b) : y(j) = t(j),∀mj=1?
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The Perceptron Algorithm

Perceptron Algorithm

Initialize w = 0 and b = 0

Repeat for j = 1, ...,m

If x(j) is correctly classified (y(j) = t(j)), continue
If x(j) is wrongly classified (y(j) ̸= t(j)), update

w ← w + η · x(j)
t
(j)

b ← b + η · t(j)

for some learning rate η

Until all examples are classified correctly
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Optimization View of Perceptron

Proposition
The perceptron is equivalent to the gradient descent of the so-called Hinge Loss

L(w, b) =
1

m

m∑
j=1

max(0,−z(j)t(j))︸ ︷︷ ︸
Lj(w, b)

Proof.

w − η
∂Lj

∂w
= w − η · 1−z(j)t(j)>0 ·

(
−
∂z(j)

∂w
t(j)

)

= w − η · 1y(j) ̸=t(j) ·
(
−
∂z(j)

∂w
t(j)

)
= w + η · 1y(j) ̸=t(j) · x

(j)t(j)

Proceed similarly for the parameter b
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From Perceptron to Deep Neural Networks

layer 0 layer 1 layer 2 layer 3

Idea:
Stack multiple perceptrons together to generalize the formulation where z is the output of
a multilayer neural network with parameters θ

↪→ Updated error function L(θ)
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Numerical Differentiation
Question:
How hard is it to compute the gradient of the error function w.r.t. the model parameters

θ = θ − η
∂L
∂θ

?

Idea:
Use the definition of the derivative

∀t :
∂L
∂θt

= lim
ε→0

L(θ + ε · δt)− L(θ)
ε

δt denotes an indicator vector for the parameter t

Properties:
Applicable to any error function L
Re-evaluate the function as many times as there are parameters
(↪→ slow for a large number of parameters)
Neural networks typically have between 103 and 109 parameters
(↪→ numerical differentiation unfeasible)
Need to use high-precision due to small ε and numerator
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Non-convex error function

Problems:
L(θ) is non-convex and non-linear
For complex functions, the computation of ∇θL is tricky to be done by hand

Question:
Can we do this automatically?

A general rule to find the weights θ was not discovered until 1974 (Paul Werbos) /
1985 (LeCun) / 1986 (Rumelhart et al.)

Idea:
Need to compute the gradient ∂L/∂wjk

↪→ Compute the error at the output, and propagate that back to the neurons in the
earlier layers
↪→ Compute the gradient
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Recall the Chain Rule

Assume some parameter of interest θq and the output of the network z are linked
through a sequence of functions

Applying the chain rule for derivatives, the derivative w.r.t. the parameter of interest
is the product of local derivatives along the path connecting θq to z

∂z

∂θq
=

∂a

∂θq

∂b

∂a

∂z

∂b
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The Multivariate Chain Rule

The parameter of interest may be linked to the output of the network via multiple
paths, formed by all neurons in layers between θq and z

Multivariate scenario ⇒ the chain rule enumerates all the paths between θq and z

∂z

∂θq
=
∑
i

∑
j

∂ai

∂θq

∂bj

∂aj

∂z

∂bj

where
∑

i and
∑

j run over all indices of the nodes in the corresponding layers
Nested sum - complexity grows exponentially with the number of layers
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Factor Structure in the Multivariate Chain Rule

Re-write the computation - perform the summing operation incrementally
Re-use intermediate computation for different paths and parameters for which we would
like to compute the gradient

∂z

∂θq
=
∑
i

∂ai

∂θq

∑
j

∂bj

∂aj

∂z

∂bj︸︷︷︸
δj︸ ︷︷ ︸

δi

The resulting gradient computation w.r.t. all parameters in the network is linear with
the size of the network (⇒ fast!)
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Backpropagation through Example

Forward pass:

z3 = a1w13

z4 = a1w14 + a2w24

z5 = a3w35 + a4w45

z6 = a4w46

zout = a5v5 + a6v6

L = max(0,−zout · t)

a1 = x1

a2 = x2

a3 = tanh (z3)

a4 = tanh (z4)

a5 = tanh (z5)

a6 = tanh (z6)
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Backpropagation through Example

Backward pass:

δout =
∂L

∂zout
= 1{−zout·t>0} · (−t)

∂L
∂v6

=
∂zout

∂v6

∂L
∂zout

= a6 · δout

∂L
∂v5

=
∂zout

∂v5

∂L
∂zout

= a5 · δout
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Backpropagation through Example

Backward pass:

δout =
∂L

∂zout
= 1{−zout·t>0} · (−t)

δ6 =
∂L
∂a6

=
∂zout

∂a6

∂L
∂zout

= v6 · δout

δ5 =
∂L
∂a5

=
∂zout

∂a5

∂L
∂zout

= v5 · δout
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Backpropagation through Example

Backward pass:

δ6 =
∂L
∂a6

=
∂zout

∂a6

∂L
∂zout

= v6 · δout

δ5 =
∂L
∂a5

=
∂zout

∂a5

∂L
∂zout

= v5 · δout

∂L
∂w46

=
∂z6

∂w46

∂a6

∂z6

∂L
∂a6

= a4 · tanh ′(z6) · δ6

∂L
∂w45

=
∂z5

∂w45

∂a5

∂z5

∂L
∂a5

= a4 · tanh ′(z5) · δ5

∂L
∂w35

=
∂z5

∂w35

∂a5

∂z5

∂L
∂a3

= a5 · tanh ′(z5) · δ5
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Backpropagation through Example

Backward pass:

δ6 =
∂L
∂a6

=
∂zout

∂a6

∂L
∂zout

= v6 · δout

δ5 =
∂L
∂a5

=
∂zout

∂a5

∂L
∂zout

= v5 · δout

δ4 =
∂L
∂a4

=
∂z6

∂a4

∂a6

∂z6

∂L
∂a6

+
∂z5

∂a4

∂a5

∂z5

∂L
∂a5

= w46 · tanh ′(z6) · δ6 + w45 · tanh ′(z5) · δ5

δ3 =
∂L
∂a3

=
∂z5

∂a3

∂a5

∂z5

∂L
∂a5

= w35 · tanh ′(z5) · δ5
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Backpropagation through Example

Backward pass:

δ4 =
∂L
∂a4

=
∂z6

∂a4

∂a6

∂z6

∂L
∂a6

+
∂z5

∂a4

∂a5

∂z5

∂L
∂a5

= w46 · tanh ′(z6) · δ6 + w45 · tanh ′(z5) · δ5

δ3 =
∂L
∂a3

=
∂z5

∂a3

∂a5

∂z5

∂L
∂a5

= w35 · tanh ′(z5) · δ5

∂L
∂w24

=
∂z4

∂w24

∂a4

∂z4

∂L
∂a4

= a2 · tanh ′(z4) · δ4

∂L
∂w14

=
∂z4

∂w14

∂a4

∂z4

∂L
∂a4

= a1 · tanh ′(z4) · δ4

∂L
∂w13

=
∂z3

∂w13

∂a3

∂z3

∂L
∂a3

= a1 · tanh ′(z3) · δ3
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Formalization for a Standard Neural Network

Propagate the gradient of the error from layer to layer using the chain rule

∂L
∂aj︸︷︷︸
δj

=
∑
k

∂ak

∂aj︸︷︷︸
wjkg

′(zk)

·
∂L
∂ak︸︷︷︸
δk

Extract gradients w.r.t. parameters at each layer as

∂L
∂wjk

=
∑
k

∂ak

∂wjk︸ ︷︷ ︸
ajg

′(zk)

·
∂L
∂ak︸︷︷︸
δk

Re-write equations as matrix-vector products

δ(l−1) = W (l−1,l) · (g′(z(l))⊙ δ(l))

∂L
∂W (l−1,l)

= a · (g′(z(l))⊙ δ(l))T
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Vanishing gradient

In general

∂L/∂W (l−1,l) ≫ ∂L/∂W (l−2,l−1)

⇒ the more left you get in the network, the more the gradient vanishes
tanh has gradients in the range (0, 1]
⇒ in an n−layer network the gradient decreases exponentially with n

Ways to circumvent vanishing gradients
Use many labeled data (e.g., well possible for images)
Train ”longer” (possible with GPUs)
Better weight initialization (e.g., Xavier/Glorot)
Regularize with “dropout“
Other activation functions: ReLU
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Choice of Nonlinear Activation Function

Choose the nonlinear function such that
Its gradient is defined (almost) everywhere
A significant portion of the input domain has a non-zero gradient
Its gradient is informative, i.e., indicate decrease/increase of the activation function

Commonly used activation functions:
Sigmoid g(z) = exp (z)/(1 + exp (z))

tanh g(z) = tanh (z)

ReLU g(z) = max(0, z)

Problematic activation functions:
g(z) = max(0, z − 100)

g(z) = 1z>0

g(z) = sin (100 · z)
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Automatic Differentiation

Automatically generate backpropagation equations from the forward equations
Automatic differentiation widely available in deep learning libraries (PyTorch, Tensor-
flow, JAX, etc.)

Consequences:
No need to do backpropagation, just program the forward pass
↪→ backward pass comes for free
Motivated the development of neural networks that are way more complex, and with
much more heterogeneous structures (e.g. ResNet, Yolo, transformers, etc.)
In few cases, it is still useful to express the gradient analytically (e.g. to analyze theo-
retically the stability of a gradient descent procedure)
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Training Neural Networks

Basic gradient descent algorithm

Initialize θ at random
Repeat for T steps

Compute the forward pass
Use backpropagation to extract ∂L/∂θ
Perform a gradient step

θ = θ − γ
∂L
∂θ

for some learning rate γ
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Summary

Gradient descent to minimize the error of a classifier (e.g. Perceptron, neural network
+ backpropagation)
Error backpropagation provides a computationally efficient way of computing the gra-
dient compared to the formula for numerical differentiation
Error backpropagation is a direct application of the multivariate chain rule, where the
different terms can be factored due to the structure of the neural network graph
Use certain techniques to circumvent vanishing gradients
No need to program error backpropagation manually, use automatic differentiation
techniques instead

Shpresim Sadiku Calculus for Data Science



THANK YOU!

Slides available at:

www.shpresimsadiku.com

Check related information on Twitter at:

@shpresimsadiku
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