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1. Introduction 6 slides

Explainable Artificial Intelligence (XAI)

Goal. Enhance transparency/interpretability of ML models by providing intelligible justifications
for decisions in high-stakes domains.

Interpretability. Degree to which a human can consistently predict the model’s output.
Explainability. Degree to which a human can understand the cause of a decision.

Why it matters.

• DNNs are accurate yet opaque ("black-box"). Trust, accountability, and governance require
explanations.

• Distinguish prediction (model output) from prescription (human action).

• Aim: alignment of model reasoning with domain knowledge and real-world expectations.
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Inverse Classification and Adversarial Perturbations

Given a trained classifier fθ and input x ∈ Rd with fθ(x) = y , inverse classification seeks a
minimally modified x̃ = x + r with desired label ỹ ̸= y :

min
r∈Rd

L(fθ(x + r), ỹ) s.t. ∥r∥p ≤ ϵ. (1)

Two major classes of such perturbations:
• Counterfactual Explanations (CFEs): human-oriented; prioritize plausibility, feasibility,

and recourse.

• Adversarial Attacks: robustness evaluation; imperceptible yet effective (esp. in images).

Shared maths: both solve constrained optimization that minimally alters the decision; they
differ in downstream constraints (plausibility vs. worst-case failure).
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Explanations: Mapping and Desiderata

What is an explanation? A mapping E (x, fθ) to a human-interpretable object (textual, visual,
symbolic).

Causal query. Why output y for input x? (e.g., loan rejection due to low credit score.)

Desirable properties

• Comprehensibility: understandable to non-experts.

• Stability: small input changes ⇒ similar explanations.

• Consistency: same input ⇒ similar explanations across runs/models.

• Realism: counterfactuals should be feasible/in-manifold.

Open question: what constitutes a “good” explanation remains unsettled.
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Existence of Adversarial Perturbations (Theory)
For two-layer ReLU networks fθ(x) =

∑m
i=1 ui σ(w⊤

i x) with inputs near a subspace P ⊂ Rd

(dim P⊥ = ℓ):
• After training, the input gradient has a large P⊥ component with high probability:∥∥ΠP⊥(∂fθ/∂x)

∥∥ ≥ √
kℓ

2md , (2)

where k = |{active neurons}|.
• There exists a universal r ∈ P⊥ such that sign

(
fθ(x + r)

)
̸= sign

(
fθ(x)

)
and

∥r∥ ≤ O
(

fθ(x) ·
√

m
ky
·
√

d
ℓ

)
, (3)

with ky neurons aligned with label y .
Takeaway. Even small off-manifold perturbations can flip decisions; universal directions may
exist.
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Adversarial and Counterfactual Methods
FGSM (targeted/untargeted).

x̃ = x − ϵ sign
(
∇x L(fθ(x), ỹ)

)
. (4)

PGD (ℓ∞-bounded).

xt+1 = ΠB∞
ϵ (x)

(
xt − α sign(∇xL(fθ(xt), ỹ))

)
. (5)

CFEs. Solve variants of (1) with plausibility constraints/regularisation:

• Distance-based (e.g., Manhattan/Mahalanobis), actionability constraints.

• Density-aware: hard constraints via GMM components; or soft regularisers (e.g.,
LOF-based).

Structured attacks (images). Group-sparse (e.g., ADMM-based), nuclear-group norms,
homotopy sparse attacks.
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Optimization Toolbox for Perturbations
First-order methods.

• GD/SGD: xt+1 = xt − η∇xsθ(xt); momentum and Nesterov variants improve
stability/speed.

Proximal gradient (PG).

xt+1 = proxλg

(
xt − λ∇h(xt)

)
, λ ≈ 1/L. (6)

Acceleration (FISTA). Nesterov-type extrapolation yields O(1/t2) in convex settings.
Thresholding operators.

• Soft (ℓ1) and hard (ℓ0) thresholding (closed forms).
• Nonconvex ℓ1/2: explicit proximal update using ϕ2λ(xi) and threshold g(2λ).

Message. These tools enable principled trade-offs between imperceptibility, sparsity/structure,
and target success.
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2. GSE: Group-wise Sparse and Explainable Adversarial Attacks 6 slides

Introduction and Motivation
• DNNs are vulnerable to adversarial

perturbations across tasks: classification,
captioning, retrieval, QA, autonomous driving,
face recognition/detection, etc. (e.g., Carlini et
al. 2017, Athalye et al. 2018, Zhang et al.
2020).

• Beyond ℓp with p ≥ 1, the p = 0 (sparse)
regime is compelling: few pixels changed
without constraints on where and by how
much ⇒ perceptible artifacts (Su et al. 2019).

• Need: impose structure ⇒ group-wise sparse
perturbations targeted at the object of interest
(Xu et al. 2018, Zhu et al. 2021, Imtiaz et al.
2022, Kazemi et al. 2023).

Figure: Adversarial attacks generated by
GSE algorithm.

• Bridges human perception vs.
machine features (Ilyas et al. 2019);
perturbations become explainable.
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Contributions (GSE)

Two-phase algorithm for group-wise sparse, low-magnitude, explainable attacks.

1. Phase I (Selection). Non-convex regularisation with proximal splitting + a
proximity-based update of per-pixel tradeoff parameters λ to select salient pixel groups.

2. Phase II (Refinement). Nesterov’s accelerated gradient (projected onto selected
coordinates) with ℓ2-regularisation to minimise perturbation magnitude.

3. Empirics. CIFAR-10 and ImageNet: up to 50.9% (CIFAR-10) and 38.4% (ImageNet)
higher group-wise sparsity (targeted, average case) at 100% ASR.

Evaluation: ASR; sparsity (ACP), grouping (ANC, d2,0), magnitude (ℓ2), explainability
(ASM-based IS), runtime.

Explainability. Quantitatively aligns perturbations with salient regions (ASM/CAM),
outperforming SOTA sparse and group-wise sparse attacks.
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Related Work (Sparse & Group-wise Sparse Attacks)

• Sparse (p=0): one-pixel (Su et al. 2019); local search (Narodytska et al. 2016);
evolutionary methods (Croce et al. 2019); ℓ1 relaxations, e.g., SparseFool (Modas et al.
2019). Often perceptible; location/magnitude unconstrained.

• Group-wise sparse:
— StrAttack (Xu et al. 2018): ADMM with sliding masks.
— SAPF (Fan et al. 2020): ℓp-Box ADMM with binary selections.
— Homotopy-Attack (Zhu et al. 2021): nmAPG; SLIC-based 2, 0−’norm’ regularisation.
— FWnucl (Kazemi et al. 2023): nuclear group norm.

• Contrary to benchmarks, GSE method does not depend on pixel partitionings.

• Links to explanations: hitting-set duality on MNIST (Ignatiev et al. 2019); perturbations
trace discriminative features (Xu et al. 2018).



2. GSE: Group-wise Sparse and Explainable Adversarial Attacks 6 slides

Adversarial Attack Formulation

Feasible images: X = [Imin, Imax]M×N×C . Benign image x ∈ X with label y ∈ N, target ỹ ∈ N

(ỹ ̸= y). Classifier fθ and loss L.

min
r∈RM×N×C

L
(
fθ(x + r), ỹ

)
+ λD(r). (7)

max
r∈RM×N×C

L
(
fθ(x + r), y

)
− λD(r). (8)

Sparse regularisation: D(·) = ∥ · ∥p
p, 0 < p < 1.



2. GSE: Group-wise Sparse and Explainable Adversarial Attacks 6 slides

1/2-Quasinorm Regularisation and FBS
Quasinorm-regularised objective (sparse attacks):

min
r
L

(
fθ(x + r), y

)
+ λ ∥r∥p

p, 0 < p < 1. (9)

For p = 1
2 , the proximal operator admits a closed form (component-wise).

Algorithm Forward–Backward Splitting Attack (sketch)
1: Initialise r0 ← 0
2: for t = 0, . . . , T − 1 do
3: r t+1 ← proxαt λ∥·∥p

p

(
r t − αt ∇r L(fθ(x + r t), y)

)
4: end for
5: Return r̃ = rT

Limitation: yields very sparse but often large-magnitude and poorly localised perturbations
(Fan et al. 2020).
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GSE: Group-wise Sparse, Low-Magnitude Attack
Phase I (Select coordinates):

• Use a per-pixel vector λ ∈ RM×N×C
≥0 in the 1

2 -quasinorm proximal step.

• Build m = sign
(∑C

c=1 |r t |:,:,c
)

; blur with a Gaussian kernel K to obtain M = m ∗ ∗K .

• Form M via M ij = Mij + 1 if Mij ̸= 0, else q ∈ (0, 1]; update λi,j,:
t+1 = 1

M ij
λi,j,:

t .

• After t̂ iters, define selected subspace V = span{ei,j,c | λi,j,c
t̂ < λi,j,c

0 }.
Phase II (Refine on V ):

min
r∈V
L

(
fθ(x + r), y

)
+ µ ∥r∥2, solve by projected NAG. (10)

Lemma (Sadiku, Wagner, and Pokutta 2025)
The projected NAG solving Eq. (10) converges as NAG solving an unconstrained problem.
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Counterfactual Explanations (CFEs): Motivation

• ML systems operate in high-stakes
domains (finance, healthcare,
justice, hiring). Opacity ⇒
transparency, fairness, accountability
concerns.

• CFEs answer what-if: minimal
(feasible) changes to flip the
decision to a target label (Wachter
et al. 2017).

• Contrast with LRP/LIME:
attribution of present features (Bach
et al. 2015, Ribeiro et al. 2016) vs.
CFEs identify absent features whose
presence would change the outcome.

Figure: (a) Without the plausibility term, points
cluster near the blue factual data but far from the
orange distribution. (b) With the plausibility term,
points lie in high-density regions. The dashed line
shows the linear decision boundary.
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Principles: Proximity, Validity, Actionability,
Plausibility, Sparsity

Basic principles.

• Proximity (small ℓ2 distance to
factual) and Validity (fθ(x̃) = ỹ).

• Actionability: respect feature
ranges; avoid impossible edits.

• Plausibility: move toward target
class manifold (not merely across
boundary).

• Sparsity: change as few features
as possible (short explanations
are preferred (Mothilal et al.
2020, Naumann et al. 2021)).

Figure: CFEs for changing 9 → 4: sparsity alone gives
adversarial results, plausibility gives unrealistic ones,
combining both yields sparse and realistic CFEs.
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Canonical CFE Optimisation and Challenges

Canonical form for a factual x (conceptual):

min
x′∈actionable set

[
CFE loss︸ ︷︷ ︸

validity

+ dist(x ′, x)︸ ︷︷ ︸
proximity

+ dist to manifold︸ ︷︷ ︸
plausibility

+ #changes︸ ︷︷ ︸
sparsity

]
. (11)

Difficulties.

• Nonconvex classifier losses; non-smooth sparsity terms (e.g., ℓ0); complex manifold
penalties; box constraints.

• Prior work tackles subsets: linear/trees with GMM constraints (Artelt et al. 2020); ReLU
MIP with LOF (Tsiourvas et al. 2024); density-regularised relaxations (Zhang et al. 2023).
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Related Work Landscape

• Early CFEs: weighted ℓ1/Mahalanobis for sparsity and proximity (Wachter et al. 2017,
Verma et al. 2024, Karimi et al. 2020).

• DNNs with VAEs for plausibility (CEM) (Dhurandhar et al. 2018); density-based plausibility
with elastic-net (DCFE) (Zhang et al. 2023).

• Convex/GMM approach for simple classifiers (PCFE) (Artelt et al. 2020).

• MIP over ReLU polytopes with LOF constraint (limited to ReLU) (Tsiourvas et al. 2024).
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S-CFE: A Simple APG Framework (FISTA-style)
Relaxed objective (penalty form):

min
x′

h(x ′, ỹ) + gp(x ′), h = ∥x ′ − x∥2
2 + γ L(fθ(x ′), ỹ)− τ q̂(x ′, ỹ), (12)

gp = IA(x ′) + β ∥x ′ − x∥p
p, p ∈ { 1

2 , 2
3 , 1} (13)

APG step (cf. FISTA):

x ′
t+1 = proxσt gp

(
zt − σt∇h(zt , ỹ)

)
, zt+1 = x ′

t+1 + αt(x ′
t+1 − x ′

t). (14)

Plausibility choices: differentiable q̂ ∈ {q̂KDE, q̂GMM, q̂kNN}.
Sparsity control (constrained form):

g0 = IA + β I∥x′−x∥0≤m ⇒ prox = projection onto {∥x ′ − x∥0 ≤ m} ∩ A. (15)
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Empirical Highlights and Robustness
Setup. Boston Housing, Wine,
MNIST; logistic/DNN/CNN classifiers;
metrics: Validity (%), proximity (ℓ2),
sparsity (ℓ0), plausibility (LOF),
runtime.

• S-CFE variants
(KDE/GMM/kNN) produce
sparse (ℓ0 controlled), plausible
(low LOF) CFEs with strong
validity—while keeping proximity
and runtime competitive.

• Projection onto
{∥x ′ − x∥0 ≤ m} ∩ A offers
explicit sparsity control; density
terms steer toward target
manifolds.

• Robustness: plausibility constraints improve
stability to small input shifts; promotes
individual fairness.
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Learning from plausible counterfactuals (p-CFEs):
Why?

• Goal: Flip a model’s prediction via minimal input changes.
• Two worlds: Adversarial attacks vs. p-CFEs (plausible, manifold-aligned,

interpretable).
• Recent theory: adversarial perturbations contain generalizable, class-specific

features (Ilyas et al. 2019, Kumano et al. 2024).

Question: Do p-CFEs share this representational richness? And can they be better for
learning—especially under spurious correlations?

• Claim: Training on p-CFEs attains competitive accuracy and mitigates spurious
correlations (strong WGA gains).
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Contributions
1. Learning from p-CFEs: Extend the learning from perturbations paradigm from

adversarial examples to plausible counterfactuals.
2. Accuracy: Models trained on p-CFEs reach test accuracy comparable to models

trained on adversarial examples (PGD ℓ2, ℓ∞) and CFE-ℓ2.
3. Spurious correlations: p-CFE training substantially improves worst-group accuracy

(WGA); on WaterBirds it surpasses standard training by ≈ 12 %.

Figure: Random WaterBirds samples with perturbations (×40) targeting landbird labels from
true waterbirds.
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Learning from perturbations: setup & objectives

Definition (Learning from perturbations)

Given a dataset S = {(x i , yi)}ni=1, create a perturbed set S̃ = {(x̃ i , ỹi)}ni=1 by targeting
labels ỹi ̸= yi ; then train a new model on S̃ and evaluate on the clean test set.

PGD (targeted)

min
x̃
L

(
fθ(x̃), ỹ

)
s.t. ∥x̃ − x∥p ≤ ϵ.

p-CFE (targeted)

x̃ = arg min
x′∈A

{
∥x ′ − x∥22 + γ L

(
fθ(x ′), ỹ

)
− τ q̂(x ′, ỹ) + β ∥x ′ − x∥0

}
.

• Key distinction: the plausibility term (−τ q̂) pulls counterfactuals toward the target-class
manifold; ℓ0 promotes sparsity.
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Experimental setup: data, training, metrics
• Datasets with spurious

correlations:
— WaterBirds (Sagawa et al.

2019): label (land vs. water)
spuriously correlates with
background.

— SpuCoAnimals (Joshi et al.
2023): big vs. small dogs
spuriously correlate with
indoor/outdoor.

Figure: Grad-CAM visualizations show
misclassifications: a landbird on water labeled as a
waterbird and a big dog indoors as a small dog.

• Training: Fine-tune ResNet50 on perturbed sets (PGD-ℓ2, PGD-ℓ∞, CFE-ℓ2,
p-CFE-ℓ0); target labels ỹ chosen uniformly at random.

• Metrics: Train/Test accuracy.
• Worst-Group Accuracy (WGA) to quantify spurious reliance.
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Results: Accuracy and Worst-Group Accuracy (WGA)
Test accuracy (%)

PGD-ℓ2 PGD-ℓ∞ CFE-ℓ2 p-CFE Orig.

WaterBirds 86.08 86.02 88.58 86.54 87.56
SpuCoAnimals 78.10 79.43 79.00 81.78 83.13

Worst-Group Acc. (%)

PGD-ℓ2 PGD-ℓ∞ CFE-ℓ2 p-CFE Orig.

WaterBirds 56.58 61.72 63.04 76.05 64.97
SpuCoAnimals 56.06 57.53 56.60 63.53 65.60

• Takeaways. p-CFE training: (i) matches adversarial/CFE-ℓ2 on accuracy; (ii) strongly mitigates
spurious correlations—+11–12% WGA vs. standard training on WaterBirds.
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Qualitative evidence (Grad-CAM) & conclusions

Figure: Saliency maps for a landbird and dog: original, standard, PGD (ℓ2, ℓ∞), CFE (ℓ2), and
p-CFE (ℓ0) models.

Observed focus (Grad-CAM):
• Standard/PGD/CFE-ℓ2 tend to over-weight

background.
• p-CFE shifts attention to semantic object

(bird/dog).
• Simple, model-agnostic recipe—no group

labels needed.

Conclusions
• p-CFEs are effective training

signals: accurate & robust to
spurious cues.

• Manifold alignment (plausibility)
steers learning toward semantic
features.
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5. Future Directions 1 slide

Future Directions

Adversarial Training with GSE
• Use GSE examples in adversarial training.
• Report robustness–sparsity–explainability–time

trade-offs.
S-CFE: Method

• From predictor acceptance → outcome
improvement (causal constraints).

• Train on data-level targets, not only model
loss.

Model Shifts / Black-Box
• Test KDE / density-gravity plausibility under

model change.
• Black-box CFEs: finite-diff or surrogate;

consider validity-free variant (accuracy
trade-off).

Mixed & Categorical Features
• Design discrete prox/projection (beyond

one-hot + APG).
High-Dimensional CFEs

• Swap KDE/GMM for differentiable
VAEs/flows; stabilize gradients in q̂.

Learning from p-CFEs @ Scale
• Extend to LLMs/VLMs; connect with theory

of learning from perturbations.
Adversarial ⇔ p-CFE

• Conjecture: on robust models, targeted
attacks ≈ manifold-aligned p-CFEs.

• Diagnostic: angle between attack and p-CFE
directions.



Thank you for your attention!



6. Appendices - GSE

From FISTA to NAG when g = 0
• Set g = 0. Then proxαg = Id, so the update rule of FISTA becomes a plain gradient step

at the look-ahead point y t :
xt+1 = y t − α∇f (y t). (1)

• The extrapolation coefficient is

µt+1 := βt − 1
βt+1

=⇒ y t+1 = xt+1 + µt+1(xt+1 − xt). (2)

• Define instead the time-aligned coefficient

µt := βt−1 − 1
βt

. (3)

• From (2) with index shifted, this gives

y t = xt + µt(xt − xt−1). (4)



6. Appendices - GSE

From FISTA to NAG when g = 0 (cont.)
• Introduce the “velocity” v t :

v t := xt − xt−1. (5)

• Using (4), the look-ahead point is y t = xt + µtv t . Plug this into the gradient step
(1):

xt+1 = xt + µtv t − α∇f (xt + µtv t). (6)

• Now rewrite (6) in velocity form by subtracting xt from both sides:

v t+1 = xt+1 − xt = µtv t − α∇f (xt + µtv t), xt+1 = xt + v t+1. (7)

• Conclusion: Equations (7) are exactly the Nesterov Accelerated Gradient (NAG)
updates, where µt = βt−1−1

βt
provides the momentum parameter.
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Projected NAG example

Figure: Second, third and fifth coordinates of r are set to 0, the other two are perturbed.

• Define the selection matrix

A =

0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

 , A⊤ =


0 0 0
1 0 0
0 1 0
0 0 0
0 0 1

 . (16)

• Perform a QR decomposition of A⊤: find orthogonal H and upper–triangular R
such that

H⊤H = I, H A⊤ =
[
R
0

]
. (17)



6. Appendices - GSE

Projected NAG example (cont.)
• Since the columns of A⊤ are already orthonormal up to permutations/signs, one

valid choice is obtained by permuting rows; H is not unique.
• Split H = [ Y Z ]⊤ so that the columns of Y span range(A) and the columns of Z

span its orthogonal complement. A concrete valid choice is

Y =


0 0 0
1 0 0
0 1 0
0 0 0
0 0 1

 , Z =


0 1
0 0
0 0
1 0
0 0

 . (18)

• Hence any r ∈ R5 can be written as

r = Y r y + Z r z , r y ∈ R3, r z ∈ R2. (19)



6. Appendices - GSE

Coordinates, permutation, and reduced problem
• If

r =


a
b
c
d
e

 , then r y =

b
c
e

 , r z =
[

a
d

]
. (20)

• Indeed,

Y r y + Z r z =


0 0 0
1 0 0
0 1 0
0 0 0
0 0 1


b

c
e

 +


0 1
0 0
0 0
1 0
0 0


[
d
a

]
=


a
b
c
d
e

 = r . (21)
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Reduced problem

• Stacking (r y , r z) and applying H⊤ = [ Y Z ] gives a fixed permutation of the
entries of r :

H⊤
[
r y
r z

]
=


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0




b
c
e
a
d

 =


a
b
c
d
e

 . (22)

• New (reduced) problem: with Z as above,

min
z∈R2

L(fθ
(
x + Zz), t

)
+ µ ∥Zz∥2. (23)
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Projection matrix PV

• Why ZZ⊤ = PV , i.e., projection matrix onto ker A?

ZZ⊤ =


0 1
0 0
0 0
1 0
0 0


[
0 0 0 1 0
1 0 0 0 0

]
=


1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

 . (24)

• The matrix product that reorders coordinates equals PV , and applying it to a vector
(e.g., a gradient) yields

PV ∇f
(
r t

)
(25)

by the definition of PV (cf. Eq. (2.14)), which zeros entries outside V .
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GSE results on targeted adversarial attacks

Table: Targeted attacks performed on ResNet20 classifier for CIFAR-10, and ResNet50 and
ViT_B_16 classifiers for ImageNet. Tested on 1k images from each dataset, 9 target labels for
CIFAR-10 and 10 target labels for ImageNet.

Best case Average case Worst case

Attack ASR ACP ANC ℓ2 d2,0 ASR ACP ANC ℓ2 d2,0 ASR ACP ANC ℓ2 d2,0

CIFAR-10
ResNet20

GSE (Ours) 100% 29.6 1.06 0.68 137 100% 86.3 1.76 1.13 262 100% 162 3.31 1.57 399
StrAttack 100% 78.4 4.56 0.79 352 100% 231 10.1 1.86 534 100% 406 15.9 4.72 619
FWnucl 100% 283 1.18 1.48 515 85.8% 373 2.52 2.54 564 40.5% 495 4.27 3.36 609

ImageNet
ResNet50

GSE (Ours) 100% 3516 5.89 2.16 5967 100% 12014 14.6 2.93 16724 100% 21675 22.8 3.51 29538
StrAttack 100% 6579 7.18 2.45 9620 100% 15071 18.0 3.97 20921 100% 26908 32.1 6.13 34768
FWnucl 31.1% 9897 3.81 2.02 11295 7.34% 19356 7.58 3.17 26591 0.0% N/A N/A N/A N/A

ImageNet
ViT_B_16

GSE (Ours) 100% 916 3.35 2.20 1782 100% 2667 7.72 2.87 4571 100% 5920 14.3 3.60 9228
StrAttack 100% 3550 7.85 2.14 5964 100% 8729 17.2 3.50 13349 100% 16047 27.4 5.68 22447
FWnucl 53.2% 5483 4.13 2.77 6718 11.2% 6002 9.73 3.51 7427 0.0% N/A N/A N/A N/A
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Quantitative evaluation

Figure: IS vs. percentile ν for targeted versions of GSE vs. five other attacks. Evaluated on an
ImageNet ViT_B_16 classifier (a), and CIFAR-10 ResNet20 classifier (b). Tested on 1k images
from each dataset, 9 target labels for CIFAR-10 and 10 target labels for ImageNet.



7. Appendices - S-CFE

Constraining the Sparsity

• Regularize using the indicator function of the sparsity constraint

↪→ Improved control over sparsity

I∥x′−x∥0≤m(x ′) :=
{

0, if ∥x ′ − x∥0 ≤ m
+∞, otherwise.

• New g(x ′) := IA(x ′) + βI∥x′−x∥0≤m(x ′) is an indicator function

↪→ Proximal operator coincides with the projection onto the intersection

{∥x ′ − x∥0 ≤ m} ∩ A.
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Proximal operator of an indicator function

• For any indicator function IS(y) =

0, if y ∈ S,

+∞, if y /∈ S.
, its proximal operator is the

projection onto the set S:

proxIS (x) = arg min
y

{
1
2∥y − x∥2 + IS(y)

}
= arg min

y∈S
1
2∥y − x∥2 = PS(x).

• Therefore, when gp(y) is a sum of indicator functions, its proximal operator is the
projection onto the intersection of the sets defining those indicators (provided that
the intersection is nonempty).



8. Learning from perturbations

Learning from adversarial perturbations

Figure: Training on a dataset which appears mislabeled to humans (via adversarial examples)
results in good accuracy on the original test set (Ilyas et al. 2019).
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