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Explainable Artificial Intelligence (XAl)

Goal. Enhance transparency/interpretability of ML models by providing intelligible justifications
for decisions in high-stakes domains.

Interpretability. Degree to which a human can consistently predict the model’s output.
Explainability. Degree to which a human can understand the cause of a decision.

Why it matters.

= DNNs are accurate yet opaque ("black-box"). Trust, accountability, and governance require
explanations.

= Distinguish prediction (model output) from prescription (human action).

= Aim: alignment of model reasoning with domain knowledge and real-world expectations.
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Inverse Classification and Adversarial Perturbations

Given a trained classifier fy and input x € R9 with fp(x) = y, inverse classification seeks a
minimally modified X = x + r with desired label § # y:

min Lfo(x +r),7) st |irl, <e (1)

Two major classes of such perturbations:

= Counterfactual Explanations (CFEs): human-oriented; prioritize plausibility, feasibility,
and recourse.

= Adversarial Attacks: robustness evaluation; imperceptible yet effective (esp. in images).

Shared maths: both solve constrained optimization that minimally alters the decision; they
differ in downstream constraints (plausibility vs. worst-case failure).
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Explanations: Mapping and Desiderata

What is an explanation? A mapping E(x, fg) to a human-interpretable object (textual, visual,
symbolic).

Causal query. Why output y for input x? (e.g., loan rejection due to low credit score.)
Desirable properties

= Comprehensibility: understandable to non-experts.

= Stability: small input changes = similar explanations.

= Consistency: same input = similar explanations across runs/models.
= Realism: counterfactuals should be feasible/in-manifold.

Open question: what constitutes a “good"” explanation remains unsettled.
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Existence of Adversarial Perturbations (Theory)

For two-layer ReLU networks fa(x) = Y"1, u; o(w; x) with inputs near a subspace P C R
(dim P+ = 0):

= After training, the input gradient has a large P component with high probability:

M @f/0x)]| > /2%, )

where k = |{active neurons}|.

= There exists a universal r € P+ such that sign(fa(x + r)) # sign(fs(x)) and

Il < ol /2 /7). ©)

with k, neurons aligned with label y.

Takeaway. Even small off-manifold perturbations can flip decisions; universal directions may
exist.
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Adversarial and Counterfactual Methods
FGSM (targeted/untargeted).

BERLIN

% = x — esign(Vy L(fa(x), 7). (4)

PGD (/.-bounded).

xei = Mz (xc — asign(VL(fo(x.), 7)) (5)
CFEs. Solve variants of (1) with plausibility constraints/regularisation:

= Distance-based (e.g., Manhattan/Mahalanobis), actionability constraints.

= Density-aware: hard constraints via GMM components; or soft regularisers (e.g.,
LOF-based).

Structured attacks (images). Group-sparse (e.g., ADMM-based), nuclear-group norms,
homotopy sparse attacks.
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Optimization Toolbox for Perturbations
First-order methods.

= GD/SGD: x:41 = x; — 1) VxSg(x:); momentum and Nesterov variants improve
stability /speed.

Proximal gradient (PG).
Xt11 = ProxXy, (xt — /\Vh(xt)), A~1/L. (6)

Acceleration (FISTA). Nesterov-type extrapolation yields O(1/t?) in convex settings.
Thresholding operators.

= Soft (¢1) and hard ({y) thresholding (closed forms).
= Nonconvex /; ,: explicit proximal update using ¢2x(x;) and threshold g(2)).

Message. These tools enable principled trade-offs between imperceptibility, sparsity/structure,
and target success.
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f,}’sﬁy 2. GSE: Group-wise Sparse and Explainable Adversarial Attacks
Introduction and Motivation

= DNNs are vulnerable to adversarial Original | GSE perturbed Changed pixels
perturbations across tasks: classification, } |
captioning, retrieval, QA, autonomous driving,
face recognition/detection, etc. (e.g., Carlini et
al. 2017, Athalye et al. 2018, Zhang et al.
2020).

= Beyond ¢, with p > 1, the p = 0 (sparse)
regime is compelling: few pixels changed
without constraints on where and by how
much = perceptible artifacts (Su et al. 2019).

Figure: Adversarial attacks generated by
GSE algorithm.

= Need: impose structure = group-wise sparse = Bridges human perception vs.
perturbations targeted at the object of interest machine features (llyas et al. 2019);
(Xu et al. 2018, Zhu et al. 2021, Imtiaz et al. perturbations become explainable.
2022, Kazemi et al. 2023).
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Contributions (GSE)

Two-phase algorithm for group-wise sparse, low-magnitude, explainable attacks.

1. Phase | (Selection). Non-convex regularisation with proximal splitting + a
proximity-based update of per-pixel tradeoff parameters A to select salient pixel groups.

2. Phase Il (Refinement). Nesterov's accelerated gradient (projected onto selected
coordinates) with ¢-regularisation to minimise perturbation magnitude.

3. Empirics. CIFAR-10 and ImageNet: up to 50.9% (CIFAR-10) and 38.4% (ImageNet)
higher group-wise sparsity (targeted, average case) at 100% ASR.

Evaluation: ASR; sparsity (ACP), grouping (ANC, db ), magnitude ({2), explainability
(ASM-based IS), runtime.

Explainability. Quantitatively aligns perturbations with salient regions (ASM/CAM),
outperforming SOTA sparse and group-wise sparse attacks.
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Related Work (Sparse & Group-wise Sparse Attacks)

= Sparse (p=0): one-pixel (Su et al. 2019); local search (Narodytska et al. 2016);
evolutionary methods (Croce et al. 2019); ¢; relaxations, e.g., SparseFool (Modas et al.
2019). Often perceptible; location/magnitude unconstrained.

= Group-wise sparse:

— StrAttack (Xu et al. 2018): ADMM with sliding masks.

— SAPF (Fan et al. 2020): ¢,-Box ADMM with binary selections.

— Homotopy-Attack (Zhu et al. 2021): nmAPG; SLIC-based 2,0—"norm’ regularisation.
— FWhnucl (Kazemi et al. 2023): nuclear group norm.

= Contrary to benchmarks, GSE method does not depend on pixel partitionings.

= Links to explanations: hitting-set duality on MNIST (Ignatiev et al. 2019); perturbations
trace discriminative features (Xu et al. 2018).
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Adversarial Attack Formulation

BERLIN

Feasible images: X = [lnin, Imax]™*N* €. Benign image x € X’ with label y € N, target 7 € N
(7 # y). Classifier fg and loss L.

min  L(fe(x+r),7) + AD(r). (7)

FERMXNxC

max  L(fg(x+r),y) — AD(r). (8)

FERMXNXC

Sparse regularisation: D(-) = || - |5, 0 < p < 1.
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1/2-Quasinorm Regularisation and FBS

Quasinorm-regularised objective (sparse attacks):

min L(fo(x+r),y)+Arll5, 0<p<1. 9)

For p = % the proximal operator admits a closed form (component-wise).

Algorithm Forward-Backward Splitting Attack (sketch)
1: Initialise ro < 0
fort=0,..., T —1do
Feg1 <= ProXg (-2 (ft —ar V, L(fe(x + ft),)/))
end for
Return ¥ = r1

Limitation: yields very sparse but often large-magnitude and poorly localised perturbations
(Fan et al. 2020).
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GSE: Group-wise Sparse, Low-Magnitude Attack

Phase | (Select coordinates):

= Use a per-pixel vector \ € RMXNXC in the Z-quasinorm proximal step.
= Build m = sign (Zc:l |ft|;,;,c); blur with a Gaussian kernel K to obtain M = m * xK.

= Form M via My = My + 1if My # 0, else q € (0,1]; update A1} = L AP/,

= After t iters, define selected subspace V = span{e; | )\;’j"c <A
Phase Il (Refine on V):

min L(fg(x +r),y) + p||rll2, solve by projected NAG. (10)
rev

Lemma (Sadiku, Wagner, and Pokutta 2025)

The projected NAG solving Eq. (10) converges as NAG solving an unconstrained problem.
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Counterfactual Explanations (CFEs): Motivation

= ML systems operate in high-stakes

(a) Adversarial Attacks (b) Counterfactual Explanations
domains (finance, healthcare, ; ;
justice, hiring). Opacity = By PRIy
transparency, fairness, accountability = ;%;; X\,“%Zi
concerns. ey i oy
= CFEs answer what-if. minimal ‘
(feasible) changes to flip the
decision to a target |abe| (Wachter Figure: (a) Wlthout the p|aUSIbI|Ity term, points
et al. 2017). cluster near the blue factual data but far from the

orange distribution. (b) With the plausibility term,
points lie in high-density regions. The dashed line
shows the linear decision boundary.

= Contrast with LRP/LIME:
attribution of present features (Bach
et al. 2015, Ribeiro et al. 2016) vs.
CFEs identify absent features whose
presence would change the outcome.
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Principles: Proximity, Validity, Actionability,
Plausibility, Sparsity

BERLIN

Basic principles.

Plausibility -
= Proximity (small ¢, distance to e
factual) and Validity (fo(X) = 7). Wl 79999999
= Actionability: respect feature 2 N :'7 799
; avoid impossible edits Hy 777799
ranges; avol P . % g {/ ‘f .1] ‘f g 4 L]
= Plausibility: move toward target s 7949 79949
: Bl 7999999
class manifold (not merely across E IR R
boundary). AR EEER
) g4 4949494944
= Sparsity: change as few features
as possible (short explanations Figure: CFEs for changing 9 — 4: sparsity alone gives
are preferred (Mothilal et al. adversarial results, plausibility gives unrealistic ones,

2020, Naumann et al. 2021)). combining both yields sparse and realistic CFEs.
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Canonical CFE Optimisation and Challenges

Canonical form for a factual x (conceptual):

min CFE loss + dist(x’, x) + dist to manifold 4+ #chan es] 11
x’ Eactionable set [A/—/ 4,7_2 —_— u ( )
validity proximity plausibility sparsity

Difficulties.

= Nonconvex classifier losses; non-smooth sparsity terms (e.g., £p); complex manifold
penalties; box constraints.

= Prior work tackles subsets: linear/trees with GMM constraints (Artelt et al. 2020); ReLU
MIP with LOF (Tsiourvas et al. 2024); density-regularised relaxations (Zhang et al. 2023).
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Related Work Landscape
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= Early CFEs: weighted ¢;/Mahalanobis for sparsity and proximity (Wachter et al. 2017,
Verma et al. 2024, Karimi et al. 2020).

= DNNs with VAEs for plausibility (CEM) (Dhurandhar et al. 2018); density-based plausibility
with elastic-net (DCFE) (Zhang et al. 2023).

= Convex/GMM approach for simple classifiers (PCFE) (Artelt et al. 2020).
= MIP over ReLU polytopes with LOF constraint (limited to ReLU) (Tsiourvas et al. 2024).
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J S-CFE: A Simple APG Framework (FISTA-style)

Relaxed objective (penalty form):

INSTITUTE

min h(x',7) + go(x'), h=|x~ x|[3 + L(fo(x'). 7) — 7 4(x', 7), (12)

g = la(x) + BIx = x|lp, pe{3.3.1} (13)
APG step (cf. FISTA):
Xpi1 = ProX,.q, (Zt - Uch(ztay))a Zei1 = Xy + (X — X3). (14)

Plausibility choices: differentiable § € {gxkpe, Gomm, Gann }-

Sparsity control (constrained form):

8o = la+ B ljx—xjop<m = prox = projection onto {||x" — x[jo < m} N A. (15)



Zusl
INS

BERLIN

Setup. Boston Housing, Wine,
MNIST; logistic/DNN/CNN classifiers;
metrics: Validity (%), proximity (¢2),
sparsity ({o), plausibility (LOF),
runtime.

= S-CFE variants
(KDE/GMM/kNN) produce
sparse ({g controlled), plausible
(low LOF) CFEs with strong
validity—while keeping proximity
and runtime competitive.

= Projection onto
{|x" = x|lo < m} N A offers
explicit sparsity control; density
terms steer toward target
manifolds.

fy 3. S-CFE: Simple Counterfactual Explanations
Empirical Highlights and Robustness

.......

& No Plaus. —@— KDE —a— GMi

= Robustness: plausibility constraints improve
stability to small input shifts; promotes
individual fairness.
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J Learning from plausible counterfactuals (p-CFEs):
Why?

= Goal: Flip a model's prediction via minimal input changes.

» Two worlds: Adversarial attacks vs. p-CFEs (plausible, manifold-aligned,
interpretable).

= Recent theory: adversarial perturbations contain generalizable, class-specific
features (llyas et al. 2019, Kumano et al. 2024).

Question: Do p-CFEs share this representational richness? And can they be better for
learning—especially under spurious correlations?

= Claim: Training on p-CFEs attains competitive accuracy and mitigates spurious
correlations (strong WGA gains).
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Contributions
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1. Learning from p-CFEs: Extend the learning from perturbations paradigm from
adversarial examples to plausible counterfactuals.

2. Accuracy: Models trained on p-CFEs reach test accuracy comparable to models
trained on adversarial examples (PGD ¢, ;) and CFE-/5.

3. Spurious correlations: p-CFE training substantially improves worst-group accuracy
(WGA); on WaterBirds it surpasses standard training by ~ 12 %.

SpaD ¢, SpGD £, SCFE ¢, Sp-CFE £,

Figure: Random WaterBirds samples with perturbations (x40) targeting landbird labels from
true waterbirds.
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Learning from perturbations: setup & objectives

Definition (Learning from perturbations)

Given a dataset S = {(x;, y;)}7_,, create a perturbed set S = {(%;, 7i)}7_; by targeting
labels ¥; # y;; then train a new model on & and evaluate on the clean test set.

PGD (targeted) p-CFE (targeted)

m)N(in L(f(X),7)

% = arg min {1’ — x|} +7 £(fs(x).)
~ x'€A
st %= x|, <

~74(x,7) + Bl = xllo}-

= Key distinction: the plausibility term (—7 §) pulls counterfactuals toward the target-class
manifold; ¢y promotes sparsity.
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Experimental setup: data, training, metrics

BERLIN

= Datasets with spurious
correlations:
— WaterBirds (Sagawa et al.
2019): label (land vs. water)
spuriously correlates with

Original Grad-CAM

background.
— SpuCoAnimals (Joshi et al.
2023): big vs. small dogs Figure: Grad-CAM visualizations show
spuriously correlate with misclassifications: a landbird on water labeled as a
indoor/outdoor. waterbird and a big dog indoors as a small dog.

» Training: Fine-tune ResNet50 on perturbed sets (PGD-¢2, PGD-/+,, CFE-{5,
p-CFE-{p); target labels y chosen uniformly at random.

» Metrics: Train/Test accuracy.

= Worst-Group Accuracy (WGA) to quantify spurious reliance.
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J Results: Accuracy and Worst-Group Accuracy (WGA)

Test accuracy (%)

PGD-f, PGD-(,, CFE-f, p-CFE | Orig.

WaterBirds 86.08 86.02 88.58 86.54 | 87.56
SpuCoAnimals  78.10 79.43 79.00 81.78 | 83.13

Worst-Group Acc. (%)

PGD-f, PGD-(, CFE-f, p-CFE | Orig.

WaterBirds 56.58 61.72 63.04 76.05 | 64.97
SpuCoAnimals  56.06 57.53 56.60 63.53 | 65.60

= Takeaways. p-CFE training: (i) matches adversarial/CFE-{, on accuracy; (ii) strongly mitigates
spurious correlations—+11-12% WGA vs. standard training on WaterBirds.
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J Qualitative evidence (Grad-CAM) & conclusions

Original Image  Original  PGD /4 PGD{. CFEf  pCFEf

- EHSEO R
oLl

Figure: Saliency maps for a landbird and dog: original, standard, PGD (43, {~,), CFE (¢2), and
p-CFE () models.

Observed focus (Grad-CAM): Conclusions
= Standard/PGD/CFE-/; tend to over-weight = p-CFEs are effective training
background. signals: accurate & robust to
» p-CFE shifts attention to semantic object spurious cues.
(bird/dog). = Manifold alignment (plausibility)
steers learning toward semantic

= Simple, model-agnostic recipe—no group

labels needed. features.
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A 5. Future Directions

Future Directions

BERLIN

Adversarial Training with GSE Mixed & Categorical Features
= Use GSE examples in adversarial training. = Design discrete prox/projection (beyond
= Report robustness—sparsity—explainability—time one-hot + APG).
trade-offs.

High-Dimensional CFEs

S-CFE: Method = Swap KDE/GMM for differentiable

= From predictor acceptance — outcome VAEs/flows; stabilize gradients in §.
improvement (causal constraints). Learning from p-CFEs @ Scale
= Train on data-level targets, not only model

= Extend to LLMs/VLMs; connect with theory

loss. of learning from perturbations.

Model Shifts / Black-Box Adversarial < p-CFE

= Test KDE / density-gravity plausibility under

= Conjecture: on robust models, targeted
model change.

attacks ~ manifold-aligned p-CFEs.

= Diagnostic: angle between attack and p-CFE
directions.

= Black-box CFEs: finite-diff or surrogate;
consider validity-free variant (accuracy
trade-off).
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Thank you for your attention!
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J From FISTA to NAG when g =0

» Set g = 0. Then prox,, = Id, so the update rule of FISTA becomes a plain gradient step
at the look-ahead point y,:

X1 =Y, — aVFE(y,). (1)
= The extrapolation coefficient is
_ b1 _
Htt1 = = Yiy1 = Xep1 prer1(Xey1 — Xe)- (2)
Bti1

= Define instead the time-aligned coefficient

P11
I = 5 (3)

= From (2) with index shifted, this gives

Ye =Xt + pe(Xe — Xe1). (4)
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J From FISTA to NAG when g =0 (cont.)
= Introduce the “velocity” v;:
Vi = Xt — Xt—1. (5)

= Using (4), the look-ahead point is y, = x; + uve. Plug this into the gradient step
(1):
Xt4+1 :Xt+MtVt—CYVf(Xt+MtVt). (6)

= Now rewrite (6) in velocity form by subtracting x; from both sides:
Vil = Xep1 — X = fleVe — OV F(Xe 4+ [1eVe),  Xep1 = X¢ + Vieg1. (7)

= Conclusion: Equations (7) are exactly the Nesterov Accelerated Gradient (NAG)

updates, where p; = % provides the momentum parameter.
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J Projected NAG example
I S I

Figure: Second, third and fifth coordinates of r are set to 0, the other two are perturbed.

= Define the selection matrix

000
01000 100

A=100100, A" =101 0f. (16)
00001 000
00 1

= Perform a QR decomposition of AT: find orthogonal H and upper—triangular R
such that

R
HTH =1, HAT = M . (17)
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Projected NAG example (cont.)

= Since the columns of AT are already orthonormal up to permutations/signs, one
valid choice is obtained by permuting rows; H is not unique.

= Split H=[Y Z]T so that the columns of Y span range(A) and the columns of Z
span its orthogonal complement. A concrete valid choice is

000 0 1
100 00

y=1010/, Z=100 (18)
000 10
00 1 00

» Hence any r € R® can be written as

r=Yr,+Zr,, r, € R3 r, € R2 (19)
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w If

= |ndeed,

Coordinates, permutation, and reduced problem

a
b b
r=|c|, then r,=|c|, r,= [Z]_ (20)
d e
e
0 0O 0 1 3
1 0 of[b 0 0 J b
Yr,+Zr,=10 1 0 + 100 []: cl =, (21)
0 0 O e 1 0 a d
0 01 0 0 e
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Reduced problem

= Stacking (r,,r,) and applying H' = [Y Z] gives a fixed permutation of the

entries of r:
0 0 0 0 1] (b a
1 0 0 0 0] |c b
HT[ry]:OIOOOe:c
rz 0001 0|]|a d
0 01 0 0] |d e

= New (reduced) problem: with Z as above,

min L(fo(x + Zz), t) + pl|Zz|,.

zeR?

(23)
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J Projection matrix Py

= Why ZZ" = Py, i.e., projection matrix onto ker A?

77" = (24)

O = O OO
O O O O
=)

o O
o O
O =
o O
I
O O O o
O O O O O
O O O O o
O = O O O
o O O O o

= The matrix product that reorders coordinates equals Py, and applying it to a vector
(e.g., a gradient) yields

P\/ Vf(rt) (25)

by the definition of Py (cf. Eq.(2.14)), which zeros entries outside V.
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GSE results on targeted adversarial attacks

Table: Targeted attacks performed on ResNet20 classifier for CIFAR-10, and ResNet50 and
ViT_B_16 classifiers for ImageNet. Tested on 1k images from each dataset, 9 target labels for
CIFAR-10 and 10 target labels for ImageNet.

Best case Average case Worst case

Attack ASR ACP ANC & d»g ASR ACP ANC ¢, dgo ASR ACP ANC & dog

GSE (Ours) 100% 29.6
CIFAR-10 gy attack = 100% 78.4

ResNet20  Ewynycl 100% 283
.89 216 5967 100% 12014 14.6 2.93 16724 100% 21675 22.8 3.51 29538

0
5
1

ImageNet GSE (Ours) 100% 3516 5.8
18 245 09620 100% 15071 18.0 3.97 20921 100% 26908 321 6.13 34768
8 N/A N/A
3
8
1

1 0.68 137 100% 86.3 1.76 1.13 262 100% 162 3.31 1.57 399
4
1
5
R StrAttack 100% 6579 7.18 .
esNet50 (] 3 NJA - N/A
3
7
4

6
.56 0.79 352 100% 231 10.1 1.86 534 100% 406 159 472 619
8 1.48 515 85.8% 373 252 254 564 40.5% 495 427 3.36 609

Whucl 31.1% 0807 3.81 2.02 11205 7.34% 19356 7.58 3.17 26591 0.0%

.35 220 1782 100% 2667 7.72 2.87 4571 100% 5920 14.3 3.60 9228
g 2.14 5964 100% 8729 17.2 350 13349 100% 16047 27.4 5.68 22447

ImageNet  GSE (Ours) 100% 916
ViT. 16 ’ :
iT_B_. 277 6718 11.2% 6002 9.73 3,51 7427 0.0% N/A N/A N/A N/A

StrAttack 100% 3550
Whucl 53.2% 5483
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Quantitative evaluation
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(a) ImageNet ViT_B_16 (b) CIFAR-10 ResNet20

s —

04}

50 60 70 80 90 v 50 60 70 80 90 v

|+ GSE (Ours) —=— StrAttack —+— FWnucl —— SAPF —+ PGD, —s— Sparse-RS \

Figure: IS vs. percentile v for targeted versions of GSE vs. five other attacks. Evaluated on an
ImageNet ViT_B_16 classifier (a), and CIFAR-10 ResNet20 classifier (b). Tested on 1k images
from each dataset, 9 target labels for CIFAR-10 and 10 target labels for ImageNet.
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J Constraining the Sparsity

= Regularize using the indicator function of the sparsity constraint
— Improved control over sparsity

0, if |[x' —x|lo<m

400, otherwise.

lxt—xfo<m(X) = {

= New g(x') := La(x) + Bl —x|o<m(x’) is an indicator function

— Proximal operator coincides with the projection onto the intersection

{Ix — xllo < m} NA.
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Proximal operator of an indicator function

0, ifyes,
= For any indicator function Is(y) = , its proximal operator is the
+oo, ify¢S.
projection onto the set S:

o . 1 . 2 o -1 . 2
prox,5(x) = argmin { §ly — x| + Is(y) } = argmin 3|y — x|[* = Ps(x).

= Therefore, when g,(y) is a sum of indicator functions, its proximal operator is the
projection onto the intersection of the sets defining those indicators (provided that
the intersection is nonempty).



Il#;y 8. Learning from perturbations
Learning from adversarial perturbations

Training image Adversarial example Relabel as cat
- towards “cat” -

Robust Features: dog Robust Features: dog

Mon-Robust Features: dog MNon-Robust Features: cat

good accuracy

Evaluate on
original test set

Figure: Training on a dataset which appears mislabeled to humans (via adversarial examples)
results in good accuracy on the original test set (llyas et al. 2019).
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