LINEAR ALGEBRA FOR DATA SCIENCE

A workshop by Shpresim Sadiku Institute of Mathematics, Technische Universität Berlin

Lecturer

- Shpresim Sadiku
- sadiku@zib.de
- www.shpresimsadiku.com
- PhD Candidate in Mathematics at TU Berlin
- Scientific Assistant at Zuse Institute Berlin
- Passionate about Artificial Intelligence
- I love to travel and lift weights

Why Data Science?

Linear Algebra for Data Science

Typical problems in Data Science

Image Segmentation

Object Classification

Typical problems in Data Science

■ 3D Shape Analysis, e.g. Shape Retrieval

Optical Character Recognition

"qnnivm"

Web, ads and recommendations

Shpresim Sadiku

Linear Algebra for Data Science

Prerequisites for Data Science

Mathematical background in

- Linear Algebra (Today)
- Calculus (August 17)
- Statistics and Probability Theory (August 18)

Outline

- Basic Notation
- Matrix Multiplication
 - Vector-Vector Products
 - Matrix-Vector Products
 - Matrix-Matrix Products
- Operations and Properties
 - The Identity Matrix and Diagonal Matrices
 - The Transpose
 - Symmetric Matrices
 - The Trace
 - Norms
 - Linear Independence and Rank
 - The Inverse
 - Orthogonal Matrices
 - Range and Nullspace of a Matrix
 - The Determinant
 - Quadratic Forms and Positiv Semidefinite Matrices
 - Eigenvalues and Eigenvectors
 - Eigenvalues and Eigenvectors of Symmetric Matrices

Why Linear Algebra?

- Linear Algebra to compactly represent and operate on sets of linear equations
- E.g., system of equations

$$4x_1 - 5x_2 = -13$$
$$-2x_1 + 3x_2 = 9$$

Matrix notation

Ax = b

with

$$A = \begin{bmatrix} 4 & -5 \\ -2 & 3 \end{bmatrix}, \quad b = \begin{bmatrix} -13 \\ 9 \end{bmatrix}$$

Basic Concepts and Notation

- $A \in \mathbb{R}^{m \times n}$ a matrix with m rows and n columns
- $x \in \mathbb{R}^n$ a vector of n entries $\hookrightarrow column \ vector$ - matrix with n rows and 1 column $\hookrightarrow row \ vector \ x^T$
- i^{th} element of x is x_i

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Purpose of vector is to visually represent a piece of data

Matrix Elements

• Entry of A in i^{th} row and j^{th} column is a_{ij} (or $A_{ij}, A_{i,j}$)

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

• j^{th} column of A is a_j or $A_{:,j}$

$$A = \left[\begin{array}{cccc} | & | & | & | \\ a_1 & a_2 & \dots & a_n \\ | & | & | & | \end{array} \right]$$

• i^{th} row of A is a_i^T or $A_{i,:}$ $A = \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ & \vdots & \\ - & a_n^T & - \end{bmatrix}$

Shpresim Sadiku

Application: Machine Learning

1-layer network f = Wx

2-layer network $f = W_2 \max(0, W_1 x)$

Matrix Multiplication

Product of two matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$ is the matrix

$$C = AB \in \mathbb{R}^{m \times p}$$

where

$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

Vector-Vector Products

Inner (dot) product of two vectors $x, y \in \mathbb{R}^n$ is a real number given by

$$x^T y \in \mathbb{R} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \sum_{i=1}^n x_i y_i$$

- $\stackrel{\hookrightarrow}{\hookrightarrow} \text{special case of matrix multiplication} \\ \stackrel{\hookrightarrow}{\hookrightarrow} \text{note } x^T y = y^T x$
- **Duter product** of two vectors $x \in \mathbb{R}^m, y \in \mathbb{R}^n$ is a matrix whose entries are given by $(xy^T)_{ij} = x_i y_j$

$$xy^{T} \in \mathbb{R}^{m \times n} = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{m} \end{bmatrix} \begin{bmatrix} y_{1} & y_{2} & \dots & y_{n} \end{bmatrix} = \begin{bmatrix} x_{1}y_{1} & x_{1}y_{2} & \dots & x_{1}y_{n} \\ x_{2}y_{1} & x_{2}y_{2} & \dots & x_{2}y_{n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m}y_{1} & x_{m}y_{2} & \dots & x_{m}y_{n} \end{bmatrix}$$

Matrix-Vector Products

Product of a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $x \in \mathbb{R}^n$ is a vector $y = Ax \in \mathbb{R}^m$ If we write A by rows

$$y = Ax = \begin{bmatrix} & - & a_1^T & - \\ & - & a_2^T & - \\ & & \ddots & \\ & & \ddots & \\ & - & a_m^T & - \end{bmatrix} x = \begin{bmatrix} a_1^T x \\ a_2^T x \\ \vdots \\ \vdots \\ a_m^T x \end{bmatrix}$$

If we write A by columns

$$y = Ax = \begin{bmatrix} | & | & | & | \\ a_1 & a_2 & \cdots & a_n \\ | & | & | & | \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_1 \end{bmatrix} x_1 + \begin{bmatrix} a_2 \end{bmatrix} x_2 + \cdots + \begin{bmatrix} a_n \end{bmatrix} x_n$$

 $\hookrightarrow y$ is a *linear combination* of the columns of A

Matrix-Matrix Products

Matrix-matrix as a set of vector-vector products

$$C = AB = \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ & \vdots & \\ - & a_m^T & - \end{bmatrix} \begin{bmatrix} | & | & | \\ b_1 & b_2 & \cdots & b_p \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} a_1^T b_1 & a_1^T b_2 & \cdots & a_1^T b_p \\ a_2^T b_1 & a_2^T b_2 & \cdots & a_2^T b_p \\ \vdots & \vdots & \ddots & \vdots \\ a_m^T b_1 & a_m^T b_2 & \cdots & a_m^T b_p \end{bmatrix}$$

 $\hookrightarrow (i, j)^{th}$ entry of C equals inner product of i^{th} row of A and j^{th} column of B Represent A by columns, B by rows

$$C = AB = \begin{bmatrix} | & | & | & | \\ a_1 & a_2 & \cdots & a_n \\ | & | & | \end{bmatrix} \begin{bmatrix} - & b_1^T & - \\ - & b_2^T & - \\ & \vdots \\ - & b_n^T & - \end{bmatrix} = \sum_{i=1}^n a_i b_i^T$$

 $\hookrightarrow AB$ is equal to the sum, over all i, of the outer product of the i^{th} column of A and i^{th} row of B

Matrix-Matrix Products

Matrix-matrix multiplication as a set of matrix-vector products

$$C = AB = A \begin{bmatrix} | & | & | & | \\ b_1 & b_2 & \cdots & b_p \\ | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ Ab_1 & Ab_2 & \cdots & Ab_p \\ | & | & | \end{bmatrix}$$

 $\hookrightarrow i^{th}$ column of C is given by the matrix-vector product with the vector on the right, $c_i = A b_i$

 \blacksquare Represent A by rows, view rows of C as matrix-vector product between rows of A and C

$$C = AB = \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ & \vdots & \\ - & a_m^T & - \end{bmatrix} B = \begin{bmatrix} - & a_1^T B & - \\ - & a_2^T B & - \\ & \vdots & \\ - & a_m^T B & - \end{bmatrix}$$

 $\hookrightarrow i^{th}$ row of C is given by the matrix-vector product with the vector on the left, $c_i^T = a_i^T B$

Matrix multiplication properties

Matrix multiplication is associative

$$(AB)C = A(BC)$$

Proof

$$\begin{aligned} f(AB)C)_{ij} &= \sum_{k=1}^{p} (AB)_{ik} C_{kj} = \sum_{k=1}^{p} \left(\sum_{l=1}^{n} A_{il} B_{lk} \right) C_{kj} \\ &= \sum_{k=1}^{p} \left(\sum_{l=1}^{n} A_{il} B_{lk} C_{kj} \right) = \sum_{l=1}^{n} \left(\sum_{k=1}^{p} A_{il} B_{lk} C_{kj} \right) \\ &= \sum_{l=1}^{n} A_{il} \left(\sum_{k=1}^{p} B_{lk} C_{kj} \right) = \sum_{l=1}^{n} A_{il} (BC)_{lj} = (A(BC))_{ij} \end{aligned}$$

Matrix multiplication is distributive

$$A(B+C) = AB + AC$$

■ Matrix multiplication is, in general, not commutative $AB \neq BA$ \hookrightarrow If $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times q}$, then BA does not exist if m and q are not equal !

Shpresim Sadiku

Linear Algebra for Data Science

Identity Matrix and Diagonal Matrices

• Identity matrix $I \in \mathbb{R}^{n \times n}$ defined as

$$I_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

 $\blacksquare AI = A = IA$

Diagonal matrix $D = \text{diag}(d_1, d_2, ..., d_n)$

$$D_{ij} = \begin{cases} d_i, & i = j \\ 0, & i \neq j \end{cases}$$

I = diag(1, 1, ..., 1)

The Transpose

Transpose of a matrix $A \in \mathbb{R}^{m \times n}$ is $A^T \in \mathbb{R}^{n \times m}$ where

$$(A^T)_{ij} = A_{ji}$$

Properties

$$(A^{T})^{T} = A (AB)^{T} = B^{T}A^{T} (A+B)^{T} = A^{T} + B^{T}$$

Symmetric Matrices

- $A \in \mathbb{R}^{n \times n}$ is **symmetric** if $A = A^T$
- $A \in \mathbb{R}^{n \times n}$ is **anti-symmetric** if $A = -A^T$

Properties

• $A + A^T$ is symmetric, $A - A^T$ is anti-symmetric

$$A = \frac{1}{2}(A + A^T) + \frac{1}{2}(A - A^T)$$

 \blacksquare \mathbb{S}^n - set of symmetric matrices of size n

The Trace

• Trace of $A \in \mathbb{R}^{n \times n}$

$$\operatorname{tr} A = \sum_{i=1}^{n} A_{ii}$$

$$A \in \mathbb{R}^{n \times n}, \operatorname{tr} A = \operatorname{tr} A^T$$

$$A, B \in \mathbb{R}^{n \times n}, \operatorname{tr}(A + B) = \operatorname{tr} A + \operatorname{tr} B$$

$$A \in \mathbb{R}^{n \times n}, t \in \mathbb{R}, \operatorname{tr}(tA) = t \operatorname{tr} A$$

• A, B such that AB is square, $\operatorname{tr} AB = \operatorname{tr} BA$

Proof

$$\operatorname{tr} AB = \sum_{i=1}^{m} (AB)_{ii} = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} A_{ij} B_{ji} \right)$$
$$= \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} B_{ji} = \sum_{j=1}^{n} \sum_{i=1}^{m} B_{ji} A_{ij}$$
$$= \sum_{j=1}^{n} \left(\sum_{i=1}^{m} B_{ji} A_{ij} \right) = \sum_{j=1}^{n} (BA)_{jj} = \operatorname{tr} BA$$

• A, B, C such that ABC is square, tr ABC = tr BCA = tr CAB

Shpresim Sadiku

Linear Algebra for Data Science

Norms

Norm is any function f: ℝⁿ → ℝ satisfying
∀x ∈ ℝⁿ, f(x) ≥ 0 (non-negativity)
f(x) = 0 if and only if x = 0 (definiteness)
x ∈ ℝⁿ, t ∈ ℝ, f(tx) = |t|f(x) (homogeneity)
∀x, y ∈ ℝⁿ, f(x + y) ≤ f(x) + f(y) (triangle inequality)

•
$$\ell_p$$
 norm $||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$
• ℓ_2 (Euclidean) norm measures the 'length' of the vector

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

 ℓ_1 norm

$$||x||_1 = \sum_{i=1}^n |x_i|$$

 ℓ_{∞} norm

$$\|x\|_{\infty} = \max_{i} |x_{i}|$$

• Frobenius norm $||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n A_{ij}^2} = \sqrt{\operatorname{tr}(A^T A)}$

Shpresim Sadiku

Norm Exercise

Exercise

Show that the length of Ax equals the length of A^Tx if $AA^T = A^TA$.

$$|Ax||^2 = (Ax)^T (Ax)$$

= $x^T A^T Ax$
= $x^T A A^T x$
= $(A^T x)^T (A^T x)$
= $||A^T x||^2$

Norm Exercise

Exercise

Show that the length of Ax equals the length of A^Tx if $AA^T = A^TA$.

$$|Ax||^{2} = (Ax)^{T}(Ax)$$

= $x^{T}A^{T}Ax$
= $x^{T}AA^{T}x$
= $(A^{T}x)^{T}(A^{T}x)$
= $||A^{T}x||^{2}$

Linear (In)dependence

- Set $\{x_1, x_2, ..., x_n\} \subset \mathbb{R}^m$ is *(linearly) independent* if no vector can be represented as linear combination of remaining vectors
- Set $\{x_1, x_2, ..., x_n\} \subset \mathbb{R}^m$ is *(linearly) dependent* if one vector can be represented as a linear combination of the remaining vectors

$$x_n = \sum_{i=1}^{n-1} \alpha_i x_i, \quad \alpha_1, ..., \alpha_{n-1} \in \mathbb{R}$$

• E.g.
$$x_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $x_1 = \begin{bmatrix} 4 \\ 1 \\ 5 \end{bmatrix}$, $x_1 = \begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix}$ linearly dependent $(x_3 = -2x_1 + x_2)$

Rank

- Column rank of $A \in \mathbb{R}^{m \times n}$ is the size of largest subset of columns of A that consitute a linearly independent set
- **Row** rank of $A \in \mathbb{R}^{m \times n}$ is the size of largest subset of rows of A that consitute a linearly independent set
- For any $A \in \mathbb{R}^{m \times n}$ the column rank of A equals the row rank of A rank(A)

Properties

• For $A \in \mathbb{R}^{m \times n}$, rank $(A) \le \min(m, n)$ • A is **full rank** if rank $(A) = \min(m, n)$ • $A \in \mathbb{R}^{m \times n}$, rank $(A) = \operatorname{rank}(A^T)$ • $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, rank $(AB) \le \min(\operatorname{rank}(A), \operatorname{rank}(B))$ • $A, B \in \mathbb{R}^{m \times n}$, rank $(A + B) \le \operatorname{rank}(A) + \operatorname{rank}(B)$

The Inverse

• **Inverse** of $A \in \mathbb{R}^{n \times n}$, A^{-1} , is the unique matrix

$$A^{-1}A = I = AA^{-1}$$

- Note not all matrices have inverses (e.g., non-square matrices)
- A is *invertible (non-singular)* if A^{-1} exists and *non-invertible (singular)* otherwise
- A has an inverse A^{-1} if A is of full rank

Properties for
$$A, B \in \mathbb{R}^{n \times n}$$

a $(A^{-1})^{-1} = A$
b $(AB)^{-1} = B^{-1}A^{-1}$
c $(A^{-1})^T = (A^T)^{-1}$, often denoted by A^{-T}

Inverse Usage

F

Consider Ax = b where $A \in \mathbb{R}^{n \times n}$ and $x, b \in \mathbb{R}^n$. If A is non-singular (invertible), then $x = A^{-1}b$

• What if $A \in \mathbb{R}^{m \times n}$ is not a square matrix ?

The Determinant

- **Determinant** of $A \in \mathbb{R}^{n \times n}$, |A| or det A, is a function det : $\mathbb{R}^{n \times n} \to \mathbb{R}$
- $\blacksquare A_{\backslash i,\backslash j} \in \mathbb{R}^{(n-1)\times (n-1)}$ is the matrix resulting from deleting i^{th} row and j^{th} column from A
- Recursive formula

$$\begin{aligned} |A| &= \sum_{i=1}^{n} (-1)^{i+j} a_{ij} |A_{\backslash i, \backslash j}| & \text{for any } j \in 1, ..., n \\ &= \sum_{j=1}^{n} (-1)^{i+j} a_{ij} |A_{\backslash i, \backslash j}| & \text{for any } i \in 1, ..., n \end{aligned}$$

with initial $|A| = a_{11}$ for $A \in \mathbb{R}^{1 \times 1}$

$$\begin{vmatrix} a_{11} \\ a_{11} \\ a_{21} \\ a_{22} \\ a_{21} \\ a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{21} \\ a_{22} & a_{23} \\ a_{31} & a_{32} \\ a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

Determinant Properties

• Describes how much a sampled area changes in scale with linear transformations

- $\bullet A \in \mathbb{R}^{n \times n}, |A| = |A^T|$
- $\bullet A, B \in \mathbb{R}^{n \times n}, |AB| = |A||B|$
- $A \in \mathbb{R}^{n \times n}, |A| = 0$ if and only if A is singular (non-invertible)
- $A \in \mathbb{R}^{n \times n}$ and A non-singular, $|A^{-1}| = 1/|A|$

Determinant Properties

Shears and rotations do not affect determinant

- Linearly dependent transformations result in determinant 0
 - In 2D space is compressed into one dimension
 - In 3D space is compressed into two dimensions

Exercise

If $A \in \mathbb{R}^{n \times n}$ has determinant $\frac{1}{2}$, find $|2A|, |-A|, |A^2|, |A^{-1}|$

$$|2A| = 2^n |A| = 2^{n-1}$$

$$|-A| = (-1)^n |A| = (-1)^n / 2$$

$$|A^2| = |A||A| = 1/4$$

$$|A^{-1}| = \frac{1}{|A|} = 2 \text{ (as } |A| \neq 0)$$

Exercise

If $A \in \mathbb{R}^{n \times n}$ has determinant $\frac{1}{2}$, find $|2A|, |-A|, |A^2|, |A^{-1}|$

$$|2A| = 2^n |A| = 2^{n-1}$$

$$|-A| = (-1)^n |A| = (-1)^n / 2$$

$$|A^2| = |A||A| = 1/4$$

$$|A^{-1}| = \frac{1}{|A|} = 2 \text{ (as } |A| \neq 0)$$

Exercise

Find the determinants of

$$A = \begin{bmatrix} 1\\ 4\\ 2 \end{bmatrix} \begin{bmatrix} 2 & -1 & 2 \end{bmatrix}, \quad U = \begin{bmatrix} 4 & 4 & 8 & 8\\ 0 & 1 & 2 & 2\\ 0 & 0 & 2 & 6\\ 0 & 0 & 0 & 2 \end{bmatrix}, \quad \mathbf{U}^T \text{ and } \mathbf{U}^{-1}$$

$$|A| = \left| \begin{bmatrix} 1\\4\\2 \end{bmatrix} \begin{bmatrix} 2 & -1 & 2 \end{bmatrix} \right| = \left| \begin{bmatrix} 2 & -1 & 2\\8 & -4 & 8\\4 & -2 & 4 \end{bmatrix} \right| = 2(-16+16) + 1(32-32) + 2(-16+16) = 0$$

$$|U| = 4 \times 1 \times 2 \times 2 = 16 = |U^T|, \quad \text{as } U \text{ is an upper diagonal matrix}$$

$$U^{-1} = \frac{1}{|U|} = \frac{1}{16}$$

Exercise

Find the determinants of

$$A = \begin{bmatrix} 1\\ 4\\ 2 \end{bmatrix} \begin{bmatrix} 2 & -1 & 2 \end{bmatrix}, \quad U = \begin{bmatrix} 4 & 4 & 8 & 8\\ 0 & 1 & 2 & 2\\ 0 & 0 & 2 & 6\\ 0 & 0 & 0 & 2 \end{bmatrix}, \quad \mathbf{U}^T \text{ and } \mathbf{U}^{-1}$$

$$\begin{aligned} \bullet & |A| = \left| \begin{bmatrix} 1\\4\\2 \end{bmatrix} \begin{bmatrix} 2 & -1 & 2 \end{bmatrix} \right| = \left| \begin{bmatrix} 2 & -1 & 2\\8 & -4 & 8\\4 & -2 & 4 \end{bmatrix} \right| = 2(-16+16) + 1(32-32) + 2(-16+16) = 0 \\ \bullet & |U| = 4 \times 1 \times 2 \times 2 = 16 = |U^T|, \quad \text{as } U \text{ is an upper diagonal matrix} \\ \bullet & U^{-1} = \frac{1}{|U|} = \frac{1}{16} \end{aligned}$$

Eigenvalues and Eigenvectors

• $\lambda \in \mathbb{C}$ is an *eigenvalue* and $x \in \mathbb{C}^n$ is the corresponding *eigenvector* of $A \in \mathbb{R}^{n \times n}$ if

$$Ax = \lambda x, \quad x \neq 0$$

• (λ, x) is an eigenvalue-eigenvector pair of A if

$$(\lambda I - A)x = 0, \quad x \neq 0$$

• Equation has a non-zero solution to x if and only if $(\lambda I - A)$ is singular

$$|(\lambda I - A)| = 0$$

Polynomial in λ of order n

$$p(\lambda_i) = \lambda_i^n + c_{n-1}\lambda_i^{n-1} + \dots + c_1\lambda_i + c_0$$

- Roots of *characteristic polynomial* $\lambda_1, \lambda_2, ..., \lambda_n$ are the eigenvalues of A
- Eigenvector corresponding to eigenvalue λ_i

$$(\lambda_i I - A)x = 0$$

Shpresim Sadiku

Properties of Eigenvalues and Eigenvectors

- For any eigenvector $x \in \mathbb{C}^n$ and a scalar $t \in \mathbb{C}$, $A(cx) = cAx = x\lambda x = \lambda(cx)$, so cx is also an eigenvector
- The eigenvector associated with λ is normalized to have length 1
- tr $A = \sum_{i=1}^{n} \lambda_i$

$$|A| = \prod_{i=1}^{n} \lambda_i$$

- \blacksquare Rank of A equals the number of non-zero eigenvalues of A
- If A non-singular then $1/\lambda_i$ is an eigenvalue of A^{-1} with associated eigenvector x_i

$$A^{-1}x_i = (1/\lambda_i)x_i$$

Eigenvalues of diagonal matrix $D = \text{diag}(d_1, ..., d_n)$ are the diagonal entries $d_1, ..., d_n$

Eigendecomposition

Write eigenvector equations simultaneously

$$AX = X\Lambda$$

- \blacksquare Columns of $X \in \mathbb{R}^{n \times n}$ are eigenvectors of A
- \blacksquare Λ is a diagonal matrix whose entries are eigenvalues of A

$$X \in \mathbb{R}^{n \times n} = \begin{bmatrix} | & | & | \\ x_1 & x_2 & \cdots & x_n \\ | & | & | \end{bmatrix}, \quad \Lambda = \operatorname{diag}(\lambda_1, ..., \lambda_n)$$

If eigenvectors of A are linearly independent, then matrix X is invertible

$$A = X\Lambda X^{-1}$$

A matrix written in such a form is *diagonalizable*

 $\blacksquare \ A \in \mathbb{S}^n$

- All eigenvalues of A are real
- Eigenvectors of A are orthonormal (X is orthogonal, denoted by U)
- $A = U\Lambda U^T$

Exercise

Find eigenvalues and eigenvectors of
$$A = \begin{bmatrix} 3 & 4 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 0 \end{bmatrix}$, their traces

and their determinants

Solution

|A| = 0
 tr(A) = 4

$$\begin{vmatrix} |A - \lambda I| &= 0\\ \begin{bmatrix} 3 - \lambda & 4 & 2\\ 0 & 1 - \lambda & 2\\ 0 & 0 & -\lambda \end{bmatrix} \begin{vmatrix} = & 0\\ (3 - \lambda)(\lambda^2 - \lambda) &= 0 \end{vmatrix}$$

Eigenvalues are $\lambda = \{0, 1, 3\}$ and their corresponding eigenvector

Exercise

Find eigenvalues and eigenvectors of $A = \begin{bmatrix} 3 & 4 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 0 \end{bmatrix}$, their traces

and their determinants

Solution

- |A| = 0
- $\operatorname{tr}(A) = 4$

$$|A - \lambda I| = 0$$

$$\begin{vmatrix} 3 - \lambda & 4 & 2 \\ 0 & 1 - \lambda & 2 \\ 0 & 0 & -\lambda \end{vmatrix} = 0$$

$$(3 - \lambda)(\lambda^2 - \lambda) = 0$$

Eigenvalues are $\lambda = \{0, 1, 3\}$ and their corresponding eigenvectors $\begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$, $\begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

Shpresim Sadiku

Linear Algebra for Data Science

Solution

- |B| = -8(recall product of eigenvalues)
- tr(B) = 2 (recall sum of eigenvalues)

$$|B - \lambda I| = 0$$

$$\begin{vmatrix} -\lambda & 0 & 2\\ 0 & 2 - \lambda & 0\\ 2 & 0 & -\lambda \end{vmatrix} = 0$$

$$(-\lambda)(2 - \lambda)(-\lambda) - 4(2 - \lambda) = 0$$

$$(\lambda^2 - 4)(2 - \lambda) = 0$$

Eigenvalues are $\lambda = \{-2, 2, 2\}$

To find eigenvectors

$$\begin{bmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} = -2 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = 2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Note the relations are also valid for normalized eigenvectors

Shpresim Sadiku

Systems of Equations and Inverse Matrices

Basic use of linear algebra is to solve systems of equations

Solutions

- Solve it manually with algebraic operations to isolate three variables
- 2 Express the problem in terms of matrices and let a computer solve it

Solve AX = B where

$$A = \begin{bmatrix} 4 & 2 & 4 \\ 5 & 3 & 7 \\ 9 & 3 & 6 \end{bmatrix}, \quad B = \begin{bmatrix} 44 \\ 56 \\ 72 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Solve by hand using Gaussian elimination
 Use a computer to find inverse matrix A⁻¹

Exercise

Using the characteristic polynomial, find the relationship between trace, determinants and eigenvalues of any square matrix

- Let $A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$ whose eigenvalues are $\lambda_1, \dots, \lambda_n$
- Characteristic polynomial $p(\lambda) = |\lambda I A| = \lambda_n + c_{n-1}\lambda^{n-1} + \dots + c_1\lambda + c_0$
- Also $p(\lambda) = (\lambda \lambda_1) \cdots (\lambda \lambda_n)$ (Eigenvalues of A are zeros of $p(\lambda)$)

■ Express determinant as product of eigenvalues
■
$$p(0) = (0 - \lambda_1) \cdots (0 - \lambda_n) = (-1)^n \lambda_1 \cdots \lambda_n$$

■ $p(0) = |0I - A| = |-A| = (-1)^n |A|$
 $\Leftrightarrow c_0 = (-1)^n \lambda_1 \cdots \lambda_n = (-1)^n |A| \implies |A| = \lambda_1 \cdots \lambda_n$

Exercise

Using the characteristic polynomial, find the relationship between trace, determinants and eigenvalues of any square matrix

- Let $A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$ whose eigenvalues are $\lambda_1, ..., \lambda_n$
- Characteristic polynomial $p(\lambda) = |\lambda I A| = \lambda_n + c_{n-1}\lambda^{n-1} + \dots + c_1\lambda + c_0$
- Also $p(\lambda) = (\lambda \lambda_1) \cdots (\lambda \lambda_n)$ (Eigenvalues of A are zeros of $p(\lambda)$)

• Express determinant as product of eigenvalues
•
$$p(0) = (0 - \lambda_1) \cdots (0 - \lambda_n) = (-1)^n \lambda_1 \cdots \lambda_n$$

• $p(0) = |0I - A| = |-A| = (-1)^n |A|$
• $c_0 = (-1)^n \lambda_1 \cdots \lambda_n = (-1)^n |A| \implies |A| = \lambda_1 \cdots \lambda_n$

Solution

$$\begin{array}{l} & \text{Express trace as sum of eigenvalues} \\ & \text{I} \quad \text{Expand } p(\lambda) = (\lambda - \lambda_1) \cdots (\lambda - \lambda_n) \text{ to get } \lambda^{n-1} \text{ term} \\ & -\lambda_1 \lambda^{n-1} - \cdots - \lambda \lambda^{n-1} = -(\lambda_1 + \cdots + \lambda_n) \lambda^{n-1} \implies c_{n-1} = -(\lambda_1 + \cdots + \lambda_n) \\ & \text{I} \quad \text{Expand } |\lambda I - A| = \left| \begin{bmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{bmatrix} \right| \\ & \Leftrightarrow p(\lambda) = (\lambda - a_{11}) \cdots (\lambda - a_{nn}) + q(\lambda) \\ & \Leftrightarrow q(\lambda) \text{ has degree at most } n - 2, \text{ hence no } \lambda^{n-1} \text{ term} \\ & \Leftrightarrow \lambda^{n-1} \text{ term must be from } (\lambda - a_{11}) \cdots (\lambda - a_{nn}) \\ & \Leftrightarrow -(a_{11} + \cdots + a_{nn}) \lambda^{n-1} \\ & \hookrightarrow c_{n-1} = -(\lambda_1 + \lambda_n) = -(a_{11} + \cdots + a_{nn}) \implies \text{tr}(A) = \lambda_1 + \cdots + \lambda_n \end{array}$$

Shpresim Sadiku

Exercise

Diagonalize unitary matrix
$$V = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1-i \\ 1+i & -1 \end{bmatrix}$$
 to reach $V = U\Lambda U^T$

Solution

$$|V - \lambda I| = 0$$

(1 - $\sqrt{3}\lambda$)(-1 - $\sqrt{3}\lambda$) - (1 + i - i - i^2) = 0
 $3\lambda^2 = 3$

Eigenvalues are
$$\lambda = \{1, -1\}$$
, hence $\Lambda = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
Corresponding eigenvectors $\begin{bmatrix} -0.366 + 0.366i \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1.366 - 1.366i \\ 1 \end{bmatrix}$
Normalize eigenvectors to get $U = \begin{bmatrix} \frac{-0.366 + 0.366i}{1.126} & \frac{1.366 - 1.366i}{2.175} \\ \frac{1.126}{1.126} & \frac{1.366 - 1.366i}{1.126} \end{bmatrix}$

Shpresim Sadiku

Exercise

Diagonalize unitary matrix
$$V = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1-i \\ 1+i & -1 \end{bmatrix}$$
 to reach $V = U\Lambda U^T$

Solution

$$|V - \lambda I| = 0$$

(1 - \sqrt{3}\lambda)(-1 - \sqrt{3}\lambda) - (1 + i - i - i^2) = 0
3\lambda^2 = 3

Eigenvalues are
$$\lambda = \{1, -1\}$$
, hence $\Lambda = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
Corresponding eigenvectors $\begin{bmatrix} -0.366 + 0.366i \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1.366 - 1.366i \\ 1 \end{bmatrix}$
Normalize eigenvectors to get $U = \begin{bmatrix} \frac{-0.366+0.366i}{1.126} & \frac{1.366-1.366i}{2.175} \\ \frac{1.126}{1.126} & \frac{2.175}{1.2175} \end{bmatrix}$

Shpresim Sadiku

Linear Algebra for Data Science

Homework

Suppose T is a 3×3 upper triangular matrix with entries t_{ij} . Compare entries of $T^T T$ and TT^T . Show that if they are equal, then T must be diagonal.

Singular Value Decomposition (SVD)

- Generalization of eigendecomposition to $m \times n$ matrices
- $A = U\Lambda V^T$
 - U is $m \times m$ unitary matrix, whose column vectors are *left-singular vectors*
 - \blacksquare Λ is $m \times n$ rectangular diagonal matrix, whose values σ_i are $singular \ values$
 - $\blacksquare~V$ is $n \times n$ unitary matrix, whose column vectors are right-singular vectors
- Singular values of $m \times n$ matrix A are equal to positive square roots of non-zero eignelvalues of $n \times n$ matrix $A^T A$ (and $A A^T$)
- Eigenvectors of AA^T are columns of U
- Eigenvectors of $A^T A$ are columns of V

Exercise

Find singular values and singular vectors of $A = \begin{bmatrix} 1 & 4 \\ 2 & 8 \end{bmatrix}$

Solution

$$A^{T}A = \begin{bmatrix} 1 & 2 \\ 4 & 8 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 2 & 8 \end{bmatrix} = \begin{bmatrix} 5 & 20 \\ 20 & 80 \end{bmatrix}$$
$$\begin{vmatrix} \begin{bmatrix} 5 - \lambda & 20 \\ 20 & 80 - \lambda \end{bmatrix} = 0$$
$$(5 - \lambda)(80 - \lambda) - 400 = 0$$
$$\hookrightarrow \lambda = \{0, 85\} \text{ hence singular values are } \{0, \sqrt{85}\} \text{ and eigenvectors } \begin{bmatrix} 1 \\ 4 \end{bmatrix}, \begin{bmatrix} -4 \\ 1 \end{bmatrix}$$
$$AA^{T} = \begin{bmatrix} 1 & 4 \\ 2 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 8 \end{bmatrix} = \begin{bmatrix} 17 & 34 \\ 34 & 68 \end{bmatrix}$$
$$\bullet \text{ Similarly for } AA^{T} \text{ we have } \lambda = \{85, 0\} \text{ and eigenvectors } \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$
$$\Rightarrow \Sigma = \begin{bmatrix} \sqrt{85} & 0 \\ 0 & 0 \end{bmatrix}, \quad U = \begin{bmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}, \quad V = \begin{bmatrix} \frac{1}{\sqrt{17}} & -\frac{4}{\sqrt{17}} \\ \frac{4}{\sqrt{17}} & \frac{1}{\sqrt{17}} \end{bmatrix}$$

Shpresim Sadiku

c

Linear Algebra for Data Science

Exercise

Explain how $U\Sigma V^T$ expresses A as a sum or r rank-1 matrices $A = \sigma_1 u_1 v_1^T + \dots + \sigma_r u_r v_r^T$

- $\blacksquare A = U \Sigma V^T$
- $\epsilon_i = \operatorname{diag}(0, ..., \sigma_i, ..., 0)$
- $\Sigma = \sum_i \epsilon_i$ and $\epsilon_i \neq 0$ if and only if $i \in \{1, \cdots, k\}$

$$A = U\Sigma V^T = U(\Sigma_i \epsilon_i) V^T$$
$$= \sum_{i=1}^k U \epsilon_i V^T$$

Exercise

If A changes to 4A what is the change in SVD? What is the SVD for A^T and for A^{-1} ?

Solution

• $4A = U(4\Sigma)V^T$, singular values of 4A are 4 times that of A

$$A^{T} = (U\Sigma V^{T})^{T}$$
$$= (V^{T})^{T}\Sigma^{T}U^{T}$$
$$= V\Sigma^{T}U^{T}$$

$$A^{-1} = (U\Sigma V^{T})^{-1} = (V^{T})^{-1}\Sigma^{-1}U^{-1} = V\Sigma^{-1}U^{T}$$

 $\Sigma^{-1} = \text{diag}(1/\sigma_1, \cdots, 1/\sigma_n)$ $U, V \text{ orthogonal} \Longrightarrow UU^T = U^T U = I \text{ and } VV^T = V^T V = I$ $\text{Double check } A^{-1}A = I$

Shpresim Sadiku

Exercise

If A changes to 4A what is the change in SVD? What is the SVD for A^T and for A^{-1} ?

Solution

• $4A = U(4\Sigma)V^T$, singular values of 4A are 4 times that of A

$$A^{T} = (U\Sigma V^{T})^{T}$$
$$= (V^{T})^{T}\Sigma^{T}U^{T}$$
$$= V\Sigma^{T}U^{T}$$

$$A^{-1} = (U\Sigma V^{T})^{-1} = (V^{T})^{-1}\Sigma^{-1}U^{-1} = V\Sigma^{-1}U^{T}$$

• $\Sigma^{-1} = \operatorname{diag}(1/\sigma_1, \cdots, 1/\sigma_n)$

- $\blacksquare \ U, V \text{ orthogonal} \Longrightarrow \ UU^T = U^T U = I \text{ and } VV^T = V^T V = I$
- Double check $A^{-1}A = I$

Shpresim Sadiku

Linear Algebra for Data Science

Pseudoinverse

 Regression model in Machine Learning requires the computation of (Moore-Penrose) pseudoinverse

$$A^{\dagger} = (U\Lambda V^T)^{\dagger} = VD^{\dagger}U^T$$

• D^{\dagger} is pseudo-inverse of D

$$\sigma_i^{\dagger} = \begin{cases} 1/\sigma_i, & \text{if } \sigma_i \neq 0\\ 0, & otherwise \end{cases}$$

Exercise

F

Find SVD and pseudoinverse of
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$, and $C = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$

Solution

 $\bullet AA^T = \begin{bmatrix} 4 \end{bmatrix}$

Solving $|A^T A - \lambda I| = 0$ and $|AA^T - \lambda I| = 0$ we find $\lambda = \{4, 0, 0, 0\}$

• Corresponding eigenvectors
$$\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$
, $\begin{bmatrix} -1\\0\\0\\1\\1 \end{bmatrix}$, $\begin{bmatrix} -1\\0\\1\\0\\0\\1 \end{bmatrix}$, $\begin{bmatrix} -1\\1\\0\\0\\1\\0\\0 \end{bmatrix}$
 $\rightarrow \Sigma = \begin{bmatrix} 2 & 0 & 0 & 0 \end{bmatrix}$, $U = \begin{bmatrix} 4 \end{bmatrix}$, $V = \begin{bmatrix} \frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{2} & 0 & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & 0 & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & 0 & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 \end{bmatrix}$

Shpresim Sadiku

Linear Algebra for Data Science

Exercise

Fi

and SVD and pseudoinverse of
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$, and $C = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$

Solution

$$\bullet AA^T = [4]$$

• Solving
$$|A^T A - \lambda I| = 0$$
 and $|AA^T - \lambda I| = 0$ we find $\lambda = \{4, 0, 0, 0\}$

E 27

F 47

F - - 7

• Corresponding eigenvectors
$$\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$
, $\begin{bmatrix} -1\\0\\0\\1\\1 \end{bmatrix}$, $\begin{bmatrix} -1\\0\\1\\0\\1 \end{bmatrix}$, $\begin{bmatrix} -1\\1\\0\\0\\1 \end{bmatrix}$, $\begin{bmatrix} -1\\1\\0\\0\\0 \end{bmatrix}$
 $\rightarrow \Sigma = \begin{bmatrix} 2 & 0 & 0 & 0 \end{bmatrix}$, $U = \begin{bmatrix} 4 \end{bmatrix}$, $V = \begin{bmatrix} \frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{2} & 0 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{2} & \frac{1}{\sqrt{2}} & 0 & 0 \end{bmatrix}$

E - 7

Shpresim Sadiku

Linear Algebra for Data Science

Solution

• Pseudoinverse
$$A^{\dagger} = V \Sigma^{\dagger} U^{T}$$

• $A^{\dagger} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{2} & 0 & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & 0 & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{2} & \frac{1}{\sqrt{2}} & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2} \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$

$$\bullet \ B^T B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\bullet \ BB^{T} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

• Solving $|B^T B - \lambda I| = 0$ we find $\lambda = \{1, 1, 0\}$

Shpresim Sadiku

• Corresponding eigenvectors
$$\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$$

 $\hookrightarrow \Sigma = \begin{bmatrix} 1 & 0 & 0\\0 & 1 & 0 \end{bmatrix}, \quad V = \begin{bmatrix} 1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{bmatrix}, \quad U = \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix}$
• $B^{\dagger} = V\Sigma^{\dagger}U^{T} = \begin{bmatrix} 1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0\\0 & 1\\0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1\\1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1\\1 & 0\\0 & 0 \end{bmatrix}$
• $C^{T}C = \begin{bmatrix} 1 & 0\\1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1\\0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1\\1 & 1 \end{bmatrix}$
• $CC^{T} = \begin{bmatrix} 1 & 1\\0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0\\1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0\\0 & 0 \end{bmatrix}$

Pseudoinverse Exercise

• Solving
$$|C^T C - \lambda I| = 0$$
 we find $\lambda = \{2, 0\}$, corresponding eigenvectors $\begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix}$
• Solving $|CC^T - \lambda I| = 0$ we find $\lambda = \{2, 0\}$, corresponding eigenvectors $\begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}$
 $\hookrightarrow \Sigma = \begin{bmatrix} \sqrt{2} & 0\\0 & 0 \end{bmatrix}, \quad U = \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix}, \quad \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$
• $C^{\dagger} = V\Sigma^{\dagger}U^T = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 1 & 0\\0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0\\ \frac{1}{2} & 0 \end{bmatrix}$

THANK YOU!

Slides available at:

www.shpresimsadiku.com

Check related information on Twitter at:

@shpresimsadiku

Shpresim Sadiku

Linear Algebra for Data Science