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Why Data Science?
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Typical problems in Data Science

Image Segmentation

Object Classifcation
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Typical problems in Data Science

3D Shape Analysis, e.g. Shape Retrieval

Optical Character Recognition
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Web, ads and recommendations
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Prerequisites for Data Science

Mathematical background in
Linear Algebra (Today)
Calculus (August 17)
Statistics and Probability Theory (August 18)
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Outline

Basic Notation
Matrix Multiplication

Vector-Vector Products
Matrix-Vector Products
Matrix-Matrix Products

Operations and Properties
The Identity Matrix and Diagonal Matrices
The Transpose
Symmetric Matrices
The Trace
Norms
Linear Independence and Rank
The Inverse
Orthogonal Matrices
Range and Nullspace of a Matrix
The Determinant
Quadratic Forms and Positiv Semidefinite Matrices
Eigenvalues and Eigenvectors
Eigenvalues and Eigenvectors of Symmetric Matrices
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Why Linear Algebra?

Linear Algebra to compactly represent and operate on sets of linear equations
E.g., system of equations

4x1 − 5x2 = −13

−2x1 + 3x2 = 9

Matrix notation

Ax = b

with

A =

[
4 −5
−2 3

]
, b =

[
−13
9

]
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Basic Concepts and Notation

A ∈ Rm×n a matrix with m rows and n columns
x ∈ Rn a vector of n entries
↪→ column vector - matrix with n rows and 1 column
↪→ row vector xT

ith element of x is xi

x =


x1

x2

...
xn


Purpose of vector is to visually represent a piece of data
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Matrix Elements

Entry of A in ith row and jth column is aij (or Aij , Ai,j)

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


jth column of A is aj or A:,j

A =

 a1 a2 . . . an


ith row of A is aTi or Ai,:

A =


— aT1 —

— aT2 —
...

— aTn —


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Application: Machine Learning

1−layer network f = Wx 2−layer network f = W2 max(0,W1x)
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Matrix Multiplication

Product of two matrices A ∈ Rm×n and B ∈ Rn×p is the matrix

C = AB ∈ Rm×p

where

Cij =

n∑
k=1

AikBkj
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Vector-Vector Products

Inner (dot) product of two vectors x, y ∈ Rn is a real number given by

xT y ∈ R =
[
x1 x2 . . . xn

]

y1
y2
...
yn

 =
n∑

i=1

xiyi

↪→ special case of matrix multiplication
↪→ note xT y = yT x

Outer product of two vectors x ∈ Rm, y ∈ Rn is a matrix whose entries are given by
(xyT )ij = xiyj

xyT ∈ Rm×n =


x1

x2

...
xm

 [y1 y2 . . . yn
]
=


x1y1 x1y2 . . . x1yn
x2y1 x2y2 . . . x2yn

...
...

. . .
...

xmy1 xmy2 . . . xmyn


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Matrix-Vector Products

Product of a matrix A ∈ Rm×n and a vector x ∈ Rn is a vector y = Ax ∈ Rm

If we write A by rows

y = Ax =


— aT

1 —
— aT

2 —
...

— aT
m —

 x =


aT
1 x

aT
2 x

...
aT
mx


If we write A by columns

y = Ax =

 | | |
a1 a2 · · · an

| | |



x1

x2

...
xn

 =

a1

 x1 +

a2

 x2 + · · · +

an

 xn

↪→ y is a linear combination of the columns of A
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Matrix-Matrix Products

Matrix-matrix as a set of vector-vector products

C = AB =


— aT1 —
— aT2 —

...
— aTm —


 | | |
b1 b2 · · · bp
| | |

 =


aT1 b1 aT1 b2 · · · aT1 bp
aT2 b1 aT2 b2 · · · aT2 bp

...
...

. . .
...

aTmb1 aTmb2 · · · aTmbp


↪→ (i, j)th entry of C equals inner product of ith row of A and jth column of B
Represent A by columns, B by rows

C = AB =

 | | |
a1 a2 · · · an
| | |




— bT1 —
— bT2 —

...
— bTn —

 =
n∑

i=1

aib
T
i

↪→ AB is equal to the sum, over all i, of the outer product of the ith column of A and
ith row of B
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Matrix-Matrix Products

Matrix-matrix multiplication as a set of matrix-vector products

C = AB = A

 | | |
b1 b2 · · · bp
| | |

 =

 | | |
Ab1 Ab2 · · · Abp
| | |


↪→ ith column of C is given by the matrix-vector product with the vector on the right,
ci = Abi

Represent A by rows, view rows of C as matrix-vector product between rows of A and
C

C = AB =


— aT1 —
— aT2 —

...
— aTm —

B =


— aT1 B —
— aT2 B —

...
— aTmB —


↪→ ith row of C is given by the matrix-vector product with the vector on the left,
cTi = aTi B
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Matrix multiplication properties
Matrix multiplication is associative

(AB)C = A(BC)

Proof

((AB)C)ij =

p∑
k=1

(AB)ikCkj =

p∑
k=1

(
n∑

l=1

AilBlk

)
Ckj

=

p∑
k=1

(
n∑

l=1

AilBlkCkj

)
=

n∑
l=1

(
p∑

k=1

AilBlkCkj

)

=
n∑

l=1

Ail

(
p∑

k=1

BlkCkj

)
=

n∑
l=1

Ail(BC)lj = (A(BC))ij

Matrix multiplication is distributive

A(B + C) = AB +AC

Matrix multiplication is, in general, not commutative AB ̸= BA
↪→ If A ∈ Rm×n, B ∈ Rn×q , then BA does not exist if m and q are not equal !
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Identity Matrix and Diagonal Matrices

Identity matrix I ∈ Rn×n defined as

Iij =

{
1, i = j

0, i ̸= j

AI = A = IA

Diagonal matrix D = diag(d1, d2, ..., dn)

Dij =

{
di, i = j

0, i ̸= j

I = diag(1, 1, ..., 1)
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The Transpose

Transpose of a matrix A ∈ Rm×n is AT ∈ Rn×m where

(AT )ij = Aji

Properties
(AT )T = A

(AB)T = BTAT

(A + B)T = AT + BT
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Symmetric Matrices

A ∈ Rn×n is symmetric if A = AT

A ∈ Rn×n is anti-symmetric if A = −AT

Properties
A + AT is symmetric, A − AT is anti-symmetric
A = 1

2 (A + AT ) + 1
2 (A − AT )

Sn - set of symmetric matrices of size n
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The Trace
Trace of A ∈ Rn×n

trA =
n∑

i=1

Aii

Properties
A ∈ Rn×n, trA = trAT

A,B ∈ Rn×n, tr(A + B) = trA + trB

A ∈ Rn×n, t ∈ R, tr(tA) = t trA
A,B such that AB is square, trAB = trBA

Proof

trAB =
m∑

i=1

(AB)ii =
m∑

i=1

 n∑
j=1

AijBji


=

m∑
i=1

n∑
j=1

AijBji =
n∑

j=1

m∑
i=1

BjiAij

=

n∑
j=1

(
m∑

i=1

BjiAij

)
=

n∑
j=1

(BA)jj = trBA

A,B,C such that ABC is square, trABC = trBCA = trCAB
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Norms
Norm is any function f : Rn → R satisfying

1 ∀x ∈ Rn, f(x) ≥ 0 (non-negativity)
2 f(x) = 0 if and only if x = 0 (definiteness)
3 x ∈ Rn, t ∈ R, f(tx) = |t|f(x) (homogeneity)
4 ∀x, y ∈ Rn, f(x + y) ≤ f(x) + f(y) (triangle inequality)

ℓp norm ∥x∥p =
(∑n

i=1 |xi|p
)1/p

ℓ2 (Euclidean) norm measures the ’length’ of the vector

∥x∥2 =

√√√√ n∑
i=1

x2
i

ℓ1 norm

∥x∥1 =

n∑
i=1

|xi|

ℓ∞ norm

∥x∥∞ = max
i

|xi|

Frobenius norm ∥A∥F =
√∑m

i=1

∑n
j=1 A

2
ij =

√
tr(ATA)
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Norm Exercise

Exercise
Show that the length of Ax equals the length of AT x if AAT = ATA.

Solution

∥Ax∥2 = (Ax)T (Ax)

= xTATAx

= xTAAT x

= (AT x)T (AT x)

= ∥AT x∥2
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Norm Exercise

Exercise
Show that the length of Ax equals the length of AT x if AAT = ATA.

Solution

∥Ax∥2 = (Ax)T (Ax)

= xTATAx

= xTAAT x

= (AT x)T (AT x)

= ∥AT x∥2
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Linear (In)dependence

Set {x1, x2, ..., xn} ⊂ Rm is (linearly) independent if no vector can be represented
as linear combination of remaining vectors
Set {x1, x2, ..., xn} ⊂ Rm is (linearly) dependent if one vector can be represented
as a linear combination of the remaining vectors

xn =

n−1∑
i=1

αixi, α1, ..., αn−1 ∈ R

E.g. x1 =

12
3

, x1 =

41
5

 , x1 =

 2
−3
−1

 linearly dependent (x3 = −2x1 + x2)
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Rank

Column rank of A ∈ Rm×n is the size of largest subset of columns of A that consitute
a linearly independent set
Row rank of A ∈ Rm×n is the size of largest subset of rows of A that consitute a
linearly independent set
For any A ∈ Rm×n the column rank of A equals the row rank of A - rank(A)

Properties
For A ∈ Rm×n, rank(A) ≤ min(m,n)
A is full rank if rank(A) = min(m,n)

A ∈ Rm×n, rank(A) = rank(AT )

A ∈ Rm×n, B ∈ Rn×p, rank(AB) ≤ min(rank(A), rank(B))

A,B ∈ Rm×n, rank(A + B) ≤ rank(A) + rank(B)
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The Inverse

Inverse of A ∈ Rn×n, A−1, is the unique matrix

A−1A = I = AA−1

Note not all matrices have inverses (e.g., non-square matrices)
A is invertible (non-singular) if A−1 exists and non-invertible (singular) other-
wise
A has an inverse A−1 if A is of full rank

Properties for A,B ∈ Rn×n

(A−1)−1 = A

(AB)−1 = B−1A−1

(A−1)T = (AT )−1, often denoted by A−T

Inverse Usage
Consider Ax = b where A ∈ Rn×n and x, b ∈ Rn. If A is non-singular (invertible), then
x = A−1b

What if A ∈ Rm×n is not a square matrix ?
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The Determinant

Determinant of A ∈ Rn×n, |A| or detA, is a function det : Rn×n → R
A\i,\j ∈ R(n−1)×(n−1) is the matrix resulting from deleting ith row and jth column
from A
Recursive formula

|A| =
n∑

i=1

(−1)i+jaij |A\i,\j | for any j ∈ 1, ..., n

=
n∑

j=1

(−1)i+jaij |A\i,\j | for any i ∈ 1, ..., n

with initial |A| = a11 for A ∈ R1×1

|
[
a11

]
| = a11∣∣∣∣[a11 a12

a21 a22

]∣∣∣∣ = a11a22 − a12a21∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣[a22 a23

a32 a33

]∣∣∣∣− a12

∣∣∣∣[a21 a23

a31 a33

]∣∣∣∣+ a13

∣∣∣∣[a21 a22

a31 a32

]∣∣∣∣
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Determinant Properties

|I| = 1∣∣∣∣∣∣∣∣∣


— taT1 —
— aT2 —

...
— aTm —


∣∣∣∣∣∣∣∣∣ = t|A|

∣∣∣∣∣∣∣∣∣


— aT2 —
— aT1 —

...
— aTm —


∣∣∣∣∣∣∣∣∣ = −|A|

Describes how much a sampled area changes in
scale with linear transformations

A ∈ Rn×n, |A| = |AT |
A,B ∈ Rn×n, |AB| = |A||B|
A ∈ Rn×n, |A| = 0 if and only if A is singular (non-invertible)
A ∈ Rn×n and A non-singular, |A−1| = 1/|A|
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Determinant Properties

Shears and rotations do not af-
fect determinant

Linearly dependent transformations result in de-
terminant 0

In 2D space is compressed into one dimension
In 3D space is compressed into two dimensions
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Determinant Exercise

Exercise
If A ∈ Rn×n has determinant 1

2
, find |2A|, | −A|, |A2|, |A−1|

Solution
|2A| = 2n|A| = 2n−1

| −A| = (−1)n|A| = (−1)n/2

|A2| = |A||A| = 1/4

|A−1| = 1
|A| = 2 (as |A| ̸= 0)
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Determinant Exercise
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Determinant Exercise

Exercise
Find the determinants of

A =

14
2

 [2 −1 2
]
, U =


4 4 8 8
0 1 2 2
0 0 2 6
0 0 0 2

 , UT and U−1

Solution

|A| =

∣∣∣∣∣∣
14
2

 [2 −1 2
]∣∣∣∣∣∣ =

∣∣∣∣∣∣
2 −1 2
8 −4 8
4 −2 4

∣∣∣∣∣∣ = 2(−16+16)+1(32−32)+2(−16+16) = 0

|U | = 4× 1× 2× 2 = 16 = |UT |, as U is an upper diagonal matrix
U−1 = 1

|U| = 1
16
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Determinant Exercise
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Find the determinants of

A =
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Eigenvalues and Eigenvectors

λ ∈ C is an eigenvalue and x ∈ Cn is the corresponding eigenvector of A ∈ Rn×n if

Ax = λx, x ̸= 0

(λ, x) is an eigenvalue-eigenvector pair of A if

(λI −A)x = 0, x ̸= 0

Equation has a non-zero solution to x if and only if (λI −A) is singular

|(λI −A)| = 0

Polynomial in λ of order n

p(λi) = λn
i + cn−1λ

n−1
i + ...+ c1λi + c0

Roots of characteristic polynomial λ1, λ2, ..., λn are the eigenvalues of A
Eigenvector corresponding to eigenvalue λi

(λiI −A)x = 0
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Properties of Eigenvalues and Eigenvectors

For any eigenvector x ∈ Cn and a scalar t ∈ C, A(cx) = cAx = xλx = λ(cx), so cx is
also an eigenvector
The eigenvector associated with λ is normalized to have length 1

trA =
∑n

i=1 λi

|A| =
∏n

i=1 λi

Rank of A equals the number of non-zero eigenvalues of A
If A non-singular then 1/λi is an eigenvalue of A−1 with associated eigenvector xi

A−1xi = (1/λi)xi

Eigenvalues of diagonal matrix D = diag(d1, ..., dn) are the diagonal entries d1, ..., dn
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Eigendecomposition

Write eigenvector equations simultaneously

AX = XΛ

Columns of X ∈ Rn×n are eigenvectors of A
Λ is a diagonal matrix whose entries are eigenvalues of A

X ∈ Rn×n =

 | | |
x1 x2 · · · xn

| | |

 , Λ = diag(λ1, ..., λn)

If eigenvectors of A are linearly independent, then matrix X is invertible

A = XΛX−1

A matrix written in such a form is diagonalizable
A ∈ Sn

All eigenvalues of A are real
Eigenvectors of A are orthonormal (X is orthogonal, denoted by U)
A = UΛUT
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Eigendecomposition Exercise

Exercise

Find eigenvalues and eigenvectors of A =

3 4 2
0 1 2
0 0 0

 and B =

0 0 2
0 2 0
2 0 0

 , their traces

and their determinants

Solution
|A| = 0

tr(A) = 4

|A− λI| = 0∣∣∣∣∣∣
3− λ 4 2

0 1− λ 2
0 0 −λ

∣∣∣∣∣∣ = 0

(3− λ)(λ2 − λ) = 0

Eigenvalues are λ = {0, 1, 3} and their corresponding eigenvectors

 2
−2
1

 ,

−2
1
0

 ,

10
0


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Eigendecomposition Exercise

Solution
|B| = −8 (recall product of eigenvalues)
tr(B) = 2 (recall sum of eigenvalues)

|B − λI| = 0∣∣∣∣∣∣
−λ 0 2

0 2− λ 0
2 0 −λ

∣∣∣∣∣∣ = 0

(−λ)(2− λ)(−λ)− 4(2− λ) = 0

(λ2 − 4)(2− λ) = 0

Eigenvalues are λ = {−2, 2, 2}
To find eigenvectors0 0 2
0 2 0
2 0 0

−1
0
1

 = −2

−1
0
1

 ,

0 0 2
0 2 0
2 0 0

10
1

 = 2

10
1

 ,

0 0 2
0 2 0
2 0 0

01
0

 = 2

01
0


Note the relations are also valid for normalized eigenvectors
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Systems of Equations and Inverse Matrices

Basic use of linear algebra is to solve systems of equations

4x+ 2y + 4z = 44

5x+ 3y + 7z = 56

9x+ 3y + 6z = 72

Solutions
1 Solve it manually with algebraic operations to isolate three variables
2 Express the problem in terms of matrices and let a computer solve it

Solve AX = B where

A =

4 2 4
5 3 7
9 3 6

 , B =

4456
72

 , X =

xy
z


1 Solve by hand using Gaussian elimination
2 Use a computer to find inverse matrix A−1
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Eigendecomposition Exercise

Exercise
Using the characteristic polynomial, find the relationship between trace, determinants and
eigenvalues of any square matrix

Solution

Let A =

a11 · · · a1n
...

. . .
...

an1 · · · ann

 whose eigenvalues are λ1, ..., λn

Characteristic polynomial p(λ) = |λI −A| = λn + cn−1λn−1 + · · ·+ c1λ+ c0

Also p(λ) = (λ− λ1) · · · (λ− λn) (Eigenvalues of A are zeros of p(λ))

Express determinant as product of eigenvalues
1 p(0) = (0 − λ1) · · · (0 − λn) = (−1)nλ1 · · ·λn

2 p(0) = |0I − A| = | − A| = (−1)n|A|
↪→ c0 = (−1)nλ1 · · ·λn = (−1)n|A| =⇒ |A| = λ1 · · ·λn
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Eigendecomposition Exercise

Solution
Express trace as sum of eigenvalues

1 Expand p(λ) = (λ − λ1) · · · (λ − λn) to get λn−1 term

−λ1λ
n−1 − · · · − λλ

n−1
= −(λ1 + · · · + λn)λ

n−1
=⇒ cn−1 = −(λ1 + · · · + λn)

2 Expand |λI − A| =

∣∣∣∣∣∣∣∣∣


λ − a11 −a12 · · · −a1n

−a21 λ − a22 · · · −a2n

...
...

. . .
...

−an1 −an2 · · · λ − ann


∣∣∣∣∣∣∣∣∣

↪→ p(λ) = (λ − a11) · · · (λ − ann) + q(λ)

↪→ q(λ) has degree at most n − 2, hence no λn−1 term
↪→ λn−1 term must be from (λ − a11) · · · (λ − ann)

↪→ −(a11 + · · · + ann)λ
n−1

↪→ cn−1 = −(λ1 + λn) = −(a11 + · · ·+ ann) =⇒ tr(A) = λ1 + · · ·+ λn
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Eigendecomposition Exercise

Exercise
Diagonalize unitary matrix V = 1√

3

[
1 1− i

1 + i −1

]
to reach V = UΛUT

Solution

|V − λI| = 0

(1−
√
3λ)(−1−

√
3λ)− (1 + i− i− i2) = 0

3λ2 = 3

Eigenvalues are λ = {1,−1}, hence Λ =

[
−1 0
0 1

]
Corresponding eigenvectors

[
−0.366 + 0.366i

1

]
,

[
1.366− 1.366i

1

]
Normalize eigenvectors to get U =

[−0.366+0.366i
1.126

1.366−1.366i
2.175

1
1.126

1
2.175

]
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Eigendecomposition Exercise

Homework
Suppose T is a 3× 3 upper triangular matrix with entries tij . Compare entries of TTT
and TTT . Show that if they are equal, then T must be diagonal.
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Singular Value Decomposition (SVD)

Generalization of eigendecomposition to m× n matrices
A = UΛV T

U is m × m unitary matrix, whose column vectors are left-singular vectors
Λ is m × n rectangular diagonal matrix, whose values σi are singular values
V is n × n unitary matrix, whose column vectors are right-singular vectors

Singular values of m × n matrix A are equal to positive square roots of non-zero
eignelvalues of n× n matrix ATA (and AAT )
Eigenvectors of AAT are columns of U
Eigenvectors of ATA are columns of V
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SVD Exercise
Exercise
Find singular values and singular vectors of A =

[
1 4
2 8

]

Solution

ATA =

[
1 2
4 8

] [
1 4
2 8

]
=

[
5 20
20 80

]
∣∣∣∣[5 − λ 20

20 80 − λ

]∣∣∣∣ = 0

(5 − λ)(80 − λ) − 400 = 0

↪→ λ = {0, 85} hence singular values are {0,
√
85} and eigenvectors

[
1
4

]
,

[
−4
1

]
AAT =

[
1 4
2 8

] [
1 2
4 8

]
=

[
17 34
34 68

]
Similarly for AAT we have λ = {85, 0} and eigenvectors

[
1
2

]
,

[
−2
1

]

↪→ Σ =

[√
85 0
0 0

]
, U =

[
1√
5

− 2√
5

2√
5

1√
5

]
, V =

[
1√
17

− 4√
17

4√
17

1√
17

]
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SVD Exercise

Exercise
Explain how UΣV T expresses A as a sum or r rank-1 matrices A = σ1u1vT1 + · · ·+σrurvTr

Solution
A = UΣV T

ϵi = diag(0, ..., σi, ..., 0)

Σ =
∑

i ϵi and ϵi ̸= 0 if and only if i ∈ {1, · · · , k}

A = UΣV T = U(Σiϵi)V
T

=
k∑

i=1

UϵiV
T
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SVD Exercise
Exercise
If A changes to 4A what is the change in SVD? What is the SVD for AT and for A−1?

Solution
4A = U(4Σ)V T , singular values of 4A are 4 times that of A

AT = (UΣV T )T

= (V T )TΣTUT

= V ΣTUT

A−1 = (UΣV T )−1

= (V T )−1Σ−1U−1

= V Σ−1UT

Σ−1 = diag(1/σ1, · · · , 1/σn)

U, V orthogonal =⇒ UUT = UTU = I and V V T = V TV = I

Double check A−1A = I
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Pseudoinverse

Regression model in Machine Learning requires the computation of (Moore-Penrose)
pseudoinverse

A† = (UΛV T )† = V D†UT

D† is pseudo-inverse of D

σ
†
i =

{
1/σi, if σi ̸= 0

0, otherwise
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Pseudoinverse Exercise
Exercise
Find SVD and pseudoinverse of A =

[
1 1 1 1

]
, B =

[
0 1 0
1 0 0

]
, and C =

[
1 1
0 0

]

Solution

ATA =


1
1
1
1

 [1 1 1 1
]
=


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


AAT =

[
4
]

Solving |ATA− λI| = 0 and |AAT − λI| = 0 we find λ = {4, 0, 0, 0}

Corresponding eigenvectors


1
1
1
1

 ,


−1
0
0
1

 ,


−1
0
1
0

 ,


−1
1
0
0



↪→ Σ =
[
2 0 0 0

]
, U =

[
4
]
, V =


1
2

− 1√
2

− 1√
2

− 1√
2

1
2

0 0 1√
2

1
2

0 1√
2

0
1
2

1√
2

0 0


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2

1
2
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1
2

0 1√
2

0
1
2

1√
2

0 0


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Pseudoinverse Exercise

Solution
Pseudoinverse A† = V Σ†UT

A† =


1
2

− 1√
2

− 1√
2

− 1√
2

1
2

0 0 1√
2

1
2

0 1√
2

0
1
2

1√
2

0 0




1
2
0
0
0

 [4] =

1
1
1
1



BTB =

0 1
1 0
0 0

[0 1 0
1 0 0

]
=

1 0 0
0 1 0
0 0 0



BBT =

[
0 1 0
1 0 0

]0 1
1 0
0 0

 =

[
1 0
0 1

]

Solving |BTB − λI| = 0 we find λ = {1, 1, 0}
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Pseudoinverse Exercise

Solution

Corresponding eigenvectors

10
0

 ,

01
0

 ,

00
1


↪→ Σ =

[
1 0 0
0 1 0

]
, V =

1 0 0
0 1 0
0 0 1

 , U =

[
1 0
0 1

]

B† = V Σ†UT =

1 0 0
0 1 0
0 0 1

1 0
0 1
0 0

[0 1
1 0

]
=

0 1
1 0
0 0



CTC =

[
1 0
1 0

] [
1 1
0 0

]
=

[
1 1
1 1

]

CCT =

[
1 1
0 0

] [
1 0
1 0

]
=

[
2 0
0 0

]
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Pseudoinverse Exercise

Solution

Solving |CTC − λI| = 0 we find λ = {2, 0}, corresponding eigenvectors
[
1
1

]
,

[
−1
1

]
Solving |CCT − λI| = 0 we find λ = {2, 0}, corresponding eigenvectors

[
1
0

]
,

[
0
1

]
↪→ Σ =

[√
2 0
0 0

]
, U =

[
1 0
0 1

]
,

[
1√
2

− 1√
2

1√
2

1√
2

]

C† = V Σ†UT =

[
1√
2

− 1√
2

1√
2

1√
2

][
1√
2

0

0 0

] [
1 0
0 1

]
=

[ 1
2

0
1
2

0

]
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THANK YOU!

Slides available at:

www.shpresimsadiku.com

Check related information on Twitter at:

@shpresimsadiku

Shpresim Sadiku Linear Algebra for Data Science
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