Group-wise Sparse Adversarial Attacks

S. Sadiku, M. Wagner, S. Pokutta

Motivation

- Deep Neural Networks (DNN) are vulnerable to adversarial attacks
- Sparse adversarial attacks explore ℓ_p neighborhoods with p = 0 via
 - 1. Greedy single-pixel selection
 - 2. Local search techniques
- 3. Evolutionary algorithms
- 4. Relaxing ℓ_0 via the ℓ_1 ball
- Sparse methods do not constrain the magnitude of changed pixels
- Generate adversarial attacks that are simultaneously sparse and imperceptible
- Impose structure to sparse adversarial attacks by generating group-wise sparse perturbations that are targeted to the main objective in the image - leads to *explainable* perturbations

Group-wise sparse Attacks

Sheds light on significant vulnerabilities in DNNs and offers insights into their failures

ated by our attack (1), StrAttack (2), and FWnucl (3). The target model is a ResNet50.

GSE Adversarial Attacks

- $\mathscr{X} = [I_{\min}, I_{\max}]^{M \times N \times C}$ set of feasible images
- $\mathscr{L}:\mathscr{X}\times\mathbb{N}\to\mathbb{R}$ classification loss function
- Targeted sparse adversarial attacks for given x, target t

 $\min_{\mathbf{w}\in\mathbb{R}^{M\times N\times C}}\mathscr{L}(\mathbf{x}+\mathbf{w},t)+\lambda\|\mathbf{w}\|_{p}^{p}$

- Use forward-backward splitting algorithm for 0
- Requires solving the proximal operator

 $\operatorname{prox}_{\lambda\|\cdot\|_{p}^{p}}(\mathbf{w}) := \underset{\mathbf{v}\in\mathbb{R}^{M\times N\times C}}{\operatorname{arg\,min}} \frac{1}{2\lambda} \|\mathbf{y}-\mathbf{w}\|_{2}^{2} + \|\mathbf{y}\|_{p}^{p}$

- Closed-form solution for p = 1/2 (and $p = \{0, 2/3\}$)
- Tune λ to determine pixel coordinates to perturb 1. Build a mask $\mathbf{m} = \text{sign} \left(\sum_{c=1}^{C} |\mathbf{w}^{(k)}|_{:,:,c} \right) \in \{0,1\}^{M \times N}$ 2. Apply Gaussian blur kernel $\mathbf{M} = \mathbf{m} * \mathbf{K} \in [0, 1]^{M \times N}$ 3. Build

$$\overline{\mathbf{M}}_{ij} = \begin{cases} \mathbf{M}_{ij} + 1, & \text{if } \mathbf{M}_{ij} \neq 0\\ q, & \text{else} \end{cases}$$
4. Set $\lambda_{i,j,:}^{(k+1)} = \frac{\lambda_{i,j,:}^{(k)}}{\overline{\mathbf{M}}_{i,j}}$
Nesterov Accelerated Gradient over chosen coord

Evaluation metrics and Results on Untargeted Attacks

- $(\mathbf{x}^{(i)})_{0 < i < n}$ images of perturbation $(\mathbf{w}^{(i)})_{0 < i < n}$
- Attack Success Rate ASR $= \frac{m}{n}$ for m successful adversaries
- Average Number of Changed Pixels

$$\mathsf{ACP} = \frac{1}{mMN} \sum_{i=1}^{m} \|\mathbf{m}^{(i)}\|_{0},$$

- Run depth-first search (DFS) on **m** starting from every 1–entry another DFS has not yet discovered
- Average Number of Clusters (ANC) average the number of DNS runs until all 1–entries are discovered for m adversaries
- For n < M, N and $\mathscr{G} = \{G_1, ..., G_k\}$ a set containing the index sets of all overlapping *n* by *n* patches in **w**

 $d_{2,0}(\mathbf{w}) := |\{i : \|\mathbf{w}_{G_i}\|_2 \neq 0, i = 1, ..., k\}|$

	Attack	ASR	ANC	ℓ_2	$d_{2,0}$					
	GSE (Ours)	100%	41.7	1.66	0.80	177				
CIFAR-10	StrAttack	100%	118	7.50	1.02	428				
ResNet20	FWnucl	94.6%	460	1.99	2.01	594				
ImageNet	GSE (Ours)	100%	1629	8.42	1.50	3428				
	StrAttack	100%	7265	15.3	2.31	11693				
RESNELJU	FWnucl	47.4%	13760	3.79	1.81	16345				
ImageNlot	GSE (Ours)	100%	941	5.11	1.95	1964				
	StrAttack	100%	3589	10.8	2.03	8152				
VII_B_16	FWnucl	57.9%	7515	5.67	3.04	9152				
ResNet20 classifier for CIFAR-10										
ResNet50 and ViT_B_16 classifiers for ImageNet										
Tested on 1.000 samples from each dataset										

	lested	on	1,000	samp	es	trom

Results on Targeted Attacks											
ResNet20		Best case	Average case	Worst case							
Classiner for CIFAR-10	Attack	ASR ACP ANC ℓ_2 $d_{2,0}$	ASR ACP ANC ℓ_2 $d_{2,0}$	ASR ACP ANC ℓ_2 $d_{2,0}$							

Nesterov Accelerated Gradient over chosen coordinates

Speed Comparison

		Untargeted		Targeted					
Attack	CIFAR-10	Imag	eNet	CIFAR-10	Imag	eNet			
Attack	ResNet20	ResNet50	ViT_B_16	ResNet20	ResNet50	ViT_B_16			
GSE (Ours)	O.13s	3.18s	7.05s	0.16s	4.425	10.35			
StrAttack	0.97s	15.25	33.6s	1.28s	18.5s	34.2s			
FWnucl	O.25s	9.93s	26.Os	O.32s	11.6s	26.2s			

CIFAR-10		Allack	АЭК	ACP	ANC	ℓ_2	$a_{2,0}$	АЭК	ACP	ANC	ℓ_2	$a_{2,0}$	АЭК	ACP	ANC	ℓ_2	$a_{2,0}$
ResNet50 andCIFAVIT_B_16ResN		GSE (Ours)	100%	29.6	1.06	0.68	137	100%	86.3	1.76	1.13	262	100%	162	3.31	1.57	399
	CIFAR-10	StrAttack	100%	78.4	4.56	0.79	352	100%	231	10.1	1.86	534	100%	406	15.9	4.72	619
	ResNet20	FWnucl	100%	283	1.18	1.48	515	85.8%	373	2.52	2.54	564	40.5%	495	4.27	3.36	609
classifiers for	ImageNet	GSE (Ours)	100%	3516	5.89	2.16	5967	100%	12014	14.6	2.93	16724	100%	21675	22.8	3.51	29538
ImageNet		StrAttack	100%	6579	7.18	2.45	9620	100%	15071	18.0	3.97	20921	100%	26908	32.1	6.13	34768
Tested on 1,000samples fromImageNeteach datasetViT_B_16	RESINELJU	FWnucl	31.1%	9897	3.81	2.02	11295	7.34%	19356	7.58	3.17	26591	0.0%	N/A	N/A	N/A	N/A
	lmageNet ViT_B_16	GSE (Ours) StrAttack FWnucl	100% 100% 53.2%	916 3550 5483	3.35 7.85 4.13	2.20 2.14 2.77	1782 5964 6718	100% 100% 11.2%	2667 8729 6002	7.72 17.2 9.73	2.87 3.50 3.51	4571 13349 7427	100% 100% 0.0%	5920 16047 N/A	14.3 27.4 N/A	3.60 5.68 N/A	9228 22447 N/A

Visual Analysis

Interpretability Metrics

 $Z(\mathbf{x})$ logits of vectorized image $\mathbf{x} \in [I_{\min}, I_{\max}]^d$ Adversarial Saliency Map (ASM), l – true label $[\mathsf{ASM}(\mathbf{x},l,t)]_{i} = \left(\frac{\partial Z(\mathbf{x})_{t}}{\partial \mathbf{x}_{i}}\right) \left|\frac{\partial Z(\mathbf{x})_{l}}{\partial \mathbf{x}_{i}}\right| 1_{S}(i)$ $S = \left\{i \in \{1,...,d\} \left|\frac{\partial Z(\mathbf{x})_{t}}{\partial \mathbf{x}_{i}} \ge 0 \text{ or } \frac{\partial Z(\mathbf{x})_{l}}{\partial \mathbf{x}_{i}} \le 0\right\}$ Bina

ry mask
$$\mathbf{B}(\mathbf{x}, l, t) \in \{0, 1\}^d$$

 $[\mathbf{B}(\mathbf{x}, l, t)]_i = \begin{cases} 1, & \text{if } [ASM(\mathbf{x}, l, t)]_i > V \\ 0, & \text{otherwise} \end{cases}$

• Interpretability score (IS) given perturbation
$$\delta \in \mathbb{R}^d$$

$$\|\mathbf{B}(\mathbf{x}, l, t) - \|\mathbf{B}(\mathbf{x}, l, t) \odot \mathbf{w}\|_2$$

Quantitative Interpretability

Figure 2: Targeted adversarial examples generated by GSE. The target is airship for the first two rows, and golf cart for the last two rows. The attacked model is a VGG19.

- $f_k[i, j]$ activation of the unit k at the coordinates (i, j) in the last convolutional layer
- w_k^l weights corresponding to label l for unit k
- Class activation map $CAM_l[i, j] = \sum_k w_k^l f_k[i, j]$

Figure 3: IS vs. percentile v for targeted versions of GSE vs. five other attacks. Evaluated on an ImageNet ViT_B_16 classifier (a), and CIFAR-10 ResNet20 classifier (b).

Literature

[1] S. Sadiku, M. Wagner, and S. Pokutta. Group-wise Sparse and Explainable Adversarial Attacks. arXiv preprint arXiv:2311.17434, 2023.

[2] K. Xu, S. Liu, P. Zhao, P. Chen, H. Zhang, Q. Fan, D. Erdogmus, Y. Wang and X. Lin. StrAttack: Towards general implementation and better interpretability. ICLR, 2019.

[3] E. Kazemi, T. Kerdreux and L. Wang. Minimally Distorted Structured Adversarial Attacks International Journal of Computer Vision 131.1, pp. 160-176, 2023.

[4] Y. Fan, B. Wu, W. Li, Y. Zhang, M. Li, Z. Li and Y. Yang. Sparse adversarial attack via perturbation factorization. Proceedings of European Conference on Computer Vision, 2020.