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Three Problems in Deep Learning

from: Mathematics of Deep Learning, René Vidal, DeepMath Plenary Lecture, 2020
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The Three Problems are interrelated

↪→ It is easier to optimize some architec-
tures than others (Haeffele et al., 2017)

↪→ Generalization is strongly affected by
architecture (Zhang et al., 2017)

↪→ Optimization can impact generaliza-
tion (Neyshabur et al., 2015, Zhou and
Feng, 2017)
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Error Decomposition

R(f)−R∗ = (R(f)−R(f̂))︸ ︷︷ ︸
optimization error

+ (R(f̂)−RF )︸ ︷︷ ︸
estimation error

+ (RF −R∗)︸ ︷︷ ︸
approximation error

for R(f) the risk of a hypothesis f , R∗ = inff R(f) the Bayes risk,
f̂ minimizer of the empirical risk R̂(f)

Interplay of three areas
1 Learning

(↪→ Optimization, Optimal Control,...)
2 Generalization

(↪→ Statistics, Learning Theory, Stochastics,...)
3 Expressivity

(↪→ Approximation Theory, Applied Harmonic Analysis,...)
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Density in C(Rn)
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Approximation-theoretic results for the single hidden layer

Density associated with the single hidden layer perceptron model

Σ(σ) = span{σ(w · x− θ) : θ ∈ R, w ∈ Rn}

σ : R→ R activation function, weights w ∈ Rn, bias θ ∈ R

Find conditions under which Σ(σ) is dense in C(K) for any com-
pact set K ⊂ Rn

Consider sigmoidal activation functions satisfying limx→−∞ σ(x) =
0 and limx→∞ σ(x) = 1

Extend density to other function spaces (Lp spaces, the space of
measurable functionsM)
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Density in C(X) with continuous activation functions

Theorem (Cybenko, 1989)

If σ is continuous and sigmoidal, then Σ(σ) is dense in C(K).

Density in C(K) for any bounded, non-constant and monotonously
increasing continuous activation function (Funahashi, 1989)
Density in C(K) for monotonic sigmoidal activation functions and
potentially discontinuous at countably many points (Hornik et al.,
1989)

↪→ Density in Lp(µ) for finite µ and the measurable functionsM for σ
bounded and non-constant (Hornik, 1991)
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The universal approximation theorem for potentially dis-
continuous σ

Theorem (Leshno et al., 1993)

Σ(σ) is dense in C(Rn) iff σ ∈ L∞loc(R) is not a polynomial (a.e.) and
the closure of its points of discontinuity is of zero Lebesgue measure.

Density in C(Rn) for any bounded and locally Riemann-integrable
activation function (Pinkus, 1999)

↪→ Density in Lp(µ) for a non-negative finite measure µ on Rn with
compact support, which is absolutely continuous with respect to the
Lebesgue measure (Leshno et al., 1993)
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Order of Approximation
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Order of Approximation

A single hidden layer perceptron model can approximate arbitrarily
well any continuous function of n variables on a compact domain

Questions:

↪→ What is the complexity of the neural network needed to
guarantee some specified error?

↪→ Does the achievable error scale in favour of the input di-
mension?

↪→ Does the achievable error depend on a parameter quan-
tifying the smoothness of the target function?
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Order of Approximation (cont.)

Consider perceptron model with at most r units in the hidden layer

Σr(σ) =

{
r∑
i=1

aiσ(wi · x− θi) : ai, θi ∈ R, wi ∈ Rn
}

Definition (Pinkus, 1999)

For function f in a normed linear space X define the order of
approximation by

E(f ; Σr(σ);X) = inf
g∈Σr(σ)

‖f − g‖X .

Problem: target f is unknown!
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The Sobolev space
Assume f is a member of the Sobolev space

Wp
s (Bn) := {f ∈ Lp(Bn) : ∂αf ∈ Lp(Bn), ∀|α| ≤ s},

for 1 ≤ p ≤ ∞, s ∈ N, and Bn the unit ball in Rn
Wp
s (Bn) may be defined as the completion of Cs(Bn) w.r.t. norm

‖f‖s,p,µ :=



∑
|α|≤s

∫
Rn

|∂αf |pdµ

1/p

, 1 ≤ p <∞

max
|α|≤s

sup
x∈K
|∂αf(x)|, p =∞

for compact K ⊂ Rn
Consider norm one Sobolev classes

Bsp(Bn) := {f : f ∈ Wp
s (Bn), ‖f‖s,p,µ ≤ 1}
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Order of Approximation (cont.)
Consider the more general class of ridge functions

Rr(σ) =

{
r∑
i=1

σi(wi · x) : σi ∈ C(R), wi ∈ Rn, i = 1, ..., r

}

Since Σr(σ) ⊂ Rr for every σ ∈ C(R)

E(f ; Σr(σ);X) = inf
g∈Σr(σ)

‖f−g‖X ≥ inf
g∈Rr(σ)

‖f−g‖X = E(f ;Rr(σ);X)

Theorem (Maiorov, 1999)

For each n ≥ 2 and s ≥ 1,

E(Bs2;Rr;L2) = sup
f∈Bs2

E(f ;Rr;L2) � r−s/(n−1)
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Order of Approximation (cont.)

The upper bound r−s/(n−1) valid for E(Bsp; Σr(σ);Lp) for a σ ∈
C∞, sigmoidal and strictly increasing (Pinkus, 1999)

1 Denote Hk the linear space of homogeneous polynomials of degree
k (in Rn) and Pk = ∪ks=0Hs the linear space of polynomials of
degree at most k

2 Set dimHk = r =
(
n−1+k

k

)
� kn−1

3 But E(Bsp;Pk;Lp) ≤ Ck−s ≤ Cr−s/(n−1)

Question:

↪→ Why is it worth using neural networks?
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Continuous Methods of Approximation
The approximation error in practice does not depend only on the
order of approximation, but also on other factors (i.e., the method
of approximation)
Consider networks with parameters which depend continuously on
the target function

Theorem (Maiorov, 1999)

Let Qr : Lp → Σr(σ) be an approximating method where the network
parameters ci, θi and wi are continuously dependent on the target
function f ∈ Lp. Then

sup
f∈Bsp

‖f −Qr(f)‖p ≥ Cr−s/n
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Curse of Dimensionality

Relax the continuity assumption on the approximation procedure
for specific σ (e.g. logistic sigmoid) (Maiorov et al., 2000)

Theorem (Petrushev, 1998)

For σ the ReLU function,

E(Bs2; Σr(σ);L2) ≤ Cr−s/n

for s = 1, ..., n+3
2 .

Curse of Dimensionality - the number of units in the hidden layer
necessary for fixed accuracy ε is in the order O(ε−n/s)
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Circumventing the Curse of Dimensionality
with

Deep Neural Networks
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Deep Neural Networks

Deep neural networks - generalisation of shallow neural networks
Theoretical accuracy achievable with deep or shallow networks is
the same

Questions:

↪→ Why are deep neural networks so widespread, even though
it is harder to train them due to their depth?

↪→ Does the multi-layer architecture of deep neural networks
help in breaking the curse of dimensionality?

(Poggio et al., 2017) succeed in beating the curse of dimensionality
by assuming the target function is compositional
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G − function

Definition (Poggio et al., 2017)

Let G be a directed acyclic graph (DAG) with the set of nodes V.
Define a G−function f : Rn → R with an architecture corresponding to
G, where each of the n source nodes of G represents a one dimensional
input of f . Inner nodes of G represent constituent functions which get
one real one-dimensional input from every incoming edge and the
outgoing edges feed the one dimensional function value to the next
node. There is only one sink node, whose output is the G-function.

Definition (Poggio et al., 2017)

Define Bs,2p to be the class of compositional functions f : Rn → R
whose corresponding DAG G has a binary tree architecture and
constituent functions h are in Bsp(R2).
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Compositional Functions

Graphs in the top row represent G-functions of 8 variables. Each graph on the bottom row shows the

optimal network architecture approximating the function above.

Compositional function with a binary tree architecture

f(x1, x2.x3, x4) = h(h1(x1, x2), h2(x3, x4)) (1)

Dimensionality of constituent functions� overall input dimension
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Effective dimension
Definition (Poggio et al., 2017)

The effective dimension of a function class X is said to be the smallest
positive integer k if for every ε > 0, any function in X can be
approximated up to accuracy ε by a neural network of ε−k parameters.

Bsp(Rn) has effective dimension n
s

Theorem (Poggio et al., 2017)

For f ∈ Bs,22 consider a deep network with the same compositional
architecture and σ ∈ C∞ which is not a polynomial. The complexity
of the network to achieve accuracy at least ε in the supremum norm is

O
(

(n− 1)ε−2/s
)
.
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Bs,2p (Rn) has effective dimension 2
s

1 Each constituent function is in Bsp(R2), hence it can be approxima-
ted by an element of Σr(σ) with accuracy ε = cr−s/2

2 f ∈ Bs,2p , hence each of the constituent functions is Lipschitz con-
tinuous

3 E.g. for the function f (1) and approximators to level ε p, p1, p2 of
h, h1, h2

‖h(h1, h2)− p(p1, p2)‖
= ‖h(h1, h2)− h(p1, p2) + h(p1, p2)− p(p1, p2)‖
≤ ‖h(h1, h2)− h(p1, p2)‖+ ‖h(p1, p2)− p(p1, p2)‖
≤ cε

4 There are n− 1 such nodes
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Breaking the Curse of Dimensionality with DNNs

Theorem (Poggio et al., 2017)

Let f : Rn → R be a compositional G−function corresponding to a
DAG G with nodes V where each constituent function represented by
node v ∈ V is in Bsvp (Rnv) for nv the number of incoming edges of v.
Then for σ ∈ C∞, the complexity of the shallow network to achieve
accuracy at least ε in the supremum norm is

O
(
ε−n/minv∈V sv

)
while the complexity of a deep network represented by G in the
supremum norm is

O

(∑
v∈V

ε−nv/sv

)
.
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Breaking the Curse of Dimensionality (cont.)

If the effective dimensionality of constituent functions is smaller
than the effective dimensionality of the shallow network n

minv∈V sv
,

then deep networks avoid the curse of dimensionality
Extensions to the ReLU activation function (Bach, 2017)
(Poggio et al., 2017) conjecture that compositional functions are
common in nature and describe the structure of the brain (i.e.,
visual cortex)
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Deep vs Shallow
Deep networks learn ’features’ of ’features’ - better generalization
A shallow network tends to memorize the data

from: Understanding and Improving Deep Learning Algorithms, Yoshua Bengio, ML Google Distin-

guished Lecture, 2010
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Related work

The number of linear regions that can be synthesized by a deep
network with ReLU nonlinearities is much larger than by a shallow
network (Bengio et al., 2014)
Examples of specific functions that cannot be represented efficient-
ly by shallow networks (Telgarsky, 2015, Shamir et al., 2016)
Approximation with sparsely connected deep networks (Bölcskei et
al., 2019)
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