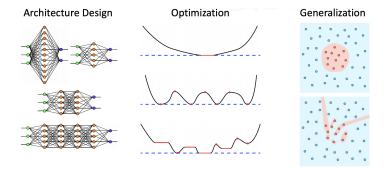
Neural Network Approximation Theory

Shpresim Sadiku

(Technische Universität Berlin & Zuse Institute Berlin)

 9^{th} BMS Conference \cdot March 4, 2021

Three Problems in Deep Learning

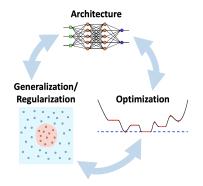


from: Mathematics of Deep Learning, René Vidal, DeepMath Plenary Lecture, 2020

 \hookrightarrow It is easier to optimize some architectures than others (Haeffele et al., 2017)

 \hookrightarrow Generalization is strongly affected by architecture (Zhang et al., 2017)

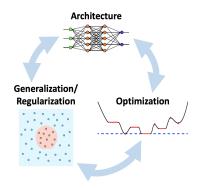
 \hookrightarrow Optimization can impact generalization (Neyshabur et al., 2015, Zhou and Feng, 2017)



 \hookrightarrow It is easier to optimize some architectures than others (Haeffele et al., 2017)

 \hookrightarrow Generalization is strongly affected by architecture (Zhang et al., 2017)

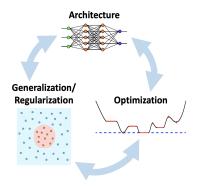
 \hookrightarrow Optimization can impact generalization (Neyshabur et al., 2015, Zhou and Feng, 2017)



 \hookrightarrow It is easier to optimize some architectures than others (Haeffele et al., 2017)

 \hookrightarrow Generalization is strongly affected by architecture (Zhang et al., 2017)

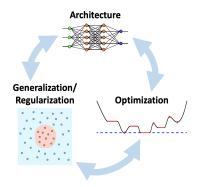
 \hookrightarrow Optimization can impact generalization (Neyshabur et al., 2015, Zhou and Feng, 2017)



 \hookrightarrow It is easier to optimize some architectures than others (Haeffele et al., 2017)

 \hookrightarrow Generalization is strongly affected by architecture (Zhang et al., 2017)

 \hookrightarrow Optimization can impact generalization (Neyshabur et al., 2015, Zhou and Feng, 2017)



$$R(f) - R^* = \underbrace{(R(f) - R(\hat{f}))}_{\text{optimization error}} + \underbrace{(R(\hat{f}) - R_{\mathcal{F}})}_{\text{estimation error}} + \underbrace{(R_{\mathcal{F}} - R^*)}_{\text{approximation error}}$$

for R(f) the risk of a hypothesis f, $R^* = \inf_f R(f)$ the Bayes risk, \hat{f} minimizer of the empirical risk $\hat{R}(f)$

Interplay of three areas

1 Learning

ZIB /

- $(\hookrightarrow \text{Optimization, Optimal Control},...)$
- 2 Generalization
 - $(\hookrightarrow$ Statistics, Learning Theory, Stochastics,...)
- 3 Expressivity

 \hookrightarrow Approximation Theory, Applied Harmonic Analysis,...)

Shpresim Sadiku

ZIB

$$R(f) - R^* = \underbrace{(R(f) - R(\hat{f}))}_{\text{optimization error}} + \underbrace{(R(\hat{f}) - R_{\mathcal{F}})}_{\text{estimation error}} + \underbrace{(R_{\mathcal{F}} - R^*)}_{\text{approximation error}}$$
for $R(f)$ the risk of a hypothesis $f, R^* = \inf_f R(f)$ the Bayes risk, \hat{f} minimizer of the empirical risk $\hat{R}(f)$

Interplay of three areas

1 Learning

 $(\hookrightarrow \text{Optimization, Optimal Control},...)$

2 Generalization

 \hookrightarrow Statistics, Learning Theory, Stochastics,...)

3 Expressivity

 \hookrightarrow Approximation Theory, Applied Harmonic Analysis,...)

Shpresim Sadiku

ZIB

$$R(f) - R^* = \underbrace{(R(f) - R(\hat{f}))}_{\text{optimization error}} + \underbrace{(R(\hat{f}) - R_{\mathcal{F}})}_{\text{estimation error}} + \underbrace{(R_{\mathcal{F}} - R^*)}_{\text{approximation error}}$$
for $R(f)$ the risk of a hypothesis $f, R^* = \inf_f R(f)$ the Bayes risk, \hat{f} minimizer of the empirical risk $\hat{R}(f)$

Interplay of three areas

- 2 Generalization
 - \hookrightarrow Statistics, Learning Theory, Stochastics,...)
- 3 Expressivity

 \hookrightarrow Approximation Theory, Applied Harmonic Analysis,...)

Shpresim Sadiku

$$\begin{split} R(f) - R^* &= \underbrace{(R(f) - R(\hat{f}))}_{\text{optimization error}} + \underbrace{(R(\hat{f}) - R_{\mathcal{F}})}_{\text{estimation error}} + \underbrace{(R_{\mathcal{F}} - R^*)}_{\text{approximation error}} \\ \text{for } R(f) \text{ the risk of a hypothesis } f, R^* &= \inf_f R(f) \text{ the Bayes risk,} \\ \hat{f} \text{ minimizer of the empirical risk } \hat{R}(f) \end{split}$$

Interplay of three areas

1 Learning

ZIB

- $(\hookrightarrow \text{Optimization, Optimal Control}, \ldots)$
- 2 Generalization
 - $(\hookrightarrow$ Statistics, Learning Theory, Stochastics,...)
- 3 Expressivity

 \rightarrow Approximation Theory, Applied Harmonic Analysis,...)

Shpresim Sadiku

$$R(f) - R^* = \underbrace{(R(f) - R(\hat{f}))}_{\text{optimization error}} + \underbrace{(R(\hat{f}) - R_{\mathcal{F}})}_{\text{estimation error}} + \underbrace{(R_{\mathcal{F}} - R^*)}_{\text{approximation error}}$$
for $R(f)$ the risk of a hypothesis $f, R^* = \inf_f R(f)$ the Bayes risk, \hat{f} minimizer of the empirical risk $\hat{R}(f)$

Interplay of three areas

1 Learning

ZIB

- $(\hookrightarrow \text{Optimization, Optimal Control}, \ldots)$
- 2 Generalization
 - $(\hookrightarrow$ Statistics, Learning Theory, Stochastics,...)
- 3 Expressivity

(\hookrightarrow Approximation Theory, Applied Harmonic Analysis,...)

Density in $C(\mathbb{R}^n)$

Density associated with the single hidden layer perceptron model

 $\Sigma(\sigma) = \operatorname{span}\{\sigma(w \cdot x - \theta) : \theta \in \mathbb{R}, w \in \mathbb{R}^n\}$

 $\sigma : \mathbb{R} \to \mathbb{R}$ activation function, weights $w \in \mathbb{R}^n$, bias $\theta \in \mathbb{R}$

- Find conditions under which $\Sigma(\sigma)$ is dense in C(K) for any compact set $K \subset \mathbb{R}^n$
- Consider sigmoidal activation functions satisfying $\lim_{x\to-\infty} \sigma(x) = 0$ and $\lim_{x\to\infty} \sigma(x) = 1$
- Extend density to other function spaces (L^p spaces, the space of measurable functions \mathcal{M})

• Density associated with the single hidden layer perceptron model

 $\Sigma(\sigma) = \operatorname{span}\{\sigma(w \cdot x - \theta) : \theta \in \mathbb{R}, w \in \mathbb{R}^n\}$

 $\sigma:\mathbb{R}\to\mathbb{R}$ activation function, weights $w\in\mathbb{R}^n,$ bias $\theta\in\mathbb{R}$

- Find conditions under which $\Sigma(\sigma)$ is dense in C(K) for any compact set $K \subset \mathbb{R}^n$
- Consider sigmoidal activation functions satisfying $\lim_{x\to-\infty} \sigma(x) = 0$ and $\lim_{x\to\infty} \sigma(x) = 1$
- Extend density to other function spaces (L^p spaces, the space of measurable functions \mathcal{M})

Density associated with the single hidden layer perceptron model

 $\Sigma(\sigma) = \operatorname{span}\{\sigma(w \cdot x - \theta) : \theta \in \mathbb{R}, w \in \mathbb{R}^n\}$

 $\sigma: \mathbb{R} \to \mathbb{R}$ activation function, weights $w \in \mathbb{R}^n$, bias $\theta \in \mathbb{R}$

- Find conditions under which $\Sigma(\sigma)$ is dense in C(K) for any compact set $K\subset \mathbb{R}^n$
- Consider sigmoidal activation functions satisfying $\lim_{x\to-\infty} \sigma(x) = 0$ and $\lim_{x\to\infty} \sigma(x) = 1$
- Extend density to other function spaces (L^p spaces, the space of measurable functions \mathcal{M})

• Density associated with the single hidden layer perceptron model

 $\Sigma(\sigma) = \operatorname{span}\{\sigma(w \cdot x - \theta) : \theta \in \mathbb{R}, w \in \mathbb{R}^n\}$

 $\sigma: \mathbb{R} \to \mathbb{R}$ activation function, weights $w \in \mathbb{R}^n$, bias $\theta \in \mathbb{R}$

- Find conditions under which $\Sigma(\sigma)$ is dense in C(K) for any compact set $K \subset \mathbb{R}^n$
- Consider sigmoidal activation functions satisfying $\lim_{x\to-\infty} \sigma(x) = 0$ and $\lim_{x\to\infty} \sigma(x) = 1$
- Extend density to other function spaces (L^p spaces, the space of measurable functions \mathcal{M})

• Density associated with the single hidden layer perceptron model

 $\Sigma(\sigma) = \operatorname{span}\{\sigma(w \cdot x - \theta) : \theta \in \mathbb{R}, w \in \mathbb{R}^n\}$

 $\sigma: \mathbb{R} \to \mathbb{R}$ activation function, weights $w \in \mathbb{R}^n$, bias $\theta \in \mathbb{R}$

- Find conditions under which $\Sigma(\sigma)$ is dense in C(K) for any compact set $K \subset \mathbb{R}^n$
- Consider sigmoidal activation functions satisfying $\lim_{x\to-\infty} \sigma(x) = 0$ and $\lim_{x\to\infty} \sigma(x) = 1$
- Extend density to other function spaces (L^p spaces, the space of measurable functions \mathcal{M})

Theorem (Cybenko, 1989)

If σ is continuous and sigmoidal, then $\Sigma(\sigma)$ is dense in C(K).

- Density in C(K) for any bounded, non-constant and monotonously increasing continuous activation function (Funahashi, 1989)
- Density in C(K) for monotonic sigmoidal activation functions and potentially discontinuous at countably many points (Hornik et al., 1989)

Theorem (Cybenko, 1989)

If σ is continuous and sigmoidal, then $\Sigma(\sigma)$ is dense in C(K).

- Density in C(K) for any bounded, non-constant and monotonously increasing continuous activation function (Funahashi, 1989)
- Density in C(K) for monotonic sigmoidal activation functions and potentially discontinuous at countably many points (Hornik et al., 1989)

Theorem (Cybenko, 1989)

If σ is continuous and sigmoidal, then $\Sigma(\sigma)$ is dense in C(K).

• Density in C(K) for any bounded, non-constant and monotonously increasing continuous activation function (Funahashi, 1989)

• Density in C(K) for monotonic sigmoidal activation functions and potentially discontinuous at countably many points (Hornik et al., 1989)

Theorem (Cybenko, 1989)

If σ is continuous and sigmoidal, then $\Sigma(\sigma)$ is dense in C(K).

- Density in C(K) for any bounded, non-constant and monotonously increasing continuous activation function (Funahashi, 1989)
- Density in C(K) for monotonic sigmoidal activation functions and potentially discontinuous at countably many points (Hornik et al., 1989)

Theorem (Cybenko, 1989)

If σ is continuous and sigmoidal, then $\Sigma(\sigma)$ is dense in C(K).

- Density in C(K) for any bounded, non-constant and monotonously increasing continuous activation function (Funahashi, 1989)
- Density in C(K) for monotonic sigmoidal activation functions and potentially discontinuous at countably many points (Hornik et al., 1989)

Theorem (Leshno et al., 1993)

 $\Sigma(\sigma)$ is dense in $C(\mathbb{R}^n)$ iff $\sigma \in L^{\infty}_{loc}(\mathbb{R})$ is not a polynomial (a.e.) and the closure of its points of discontinuity is of zero Lebesgue measure.

Density in $C(\mathbb{R}^n)$ for any bounded and locally Riemann-integrable activation function (Pinkus, 1999)

Theorem (Leshno et al., 1993)

 $\Sigma(\sigma)$ is dense in $C(\mathbb{R}^n)$ iff $\sigma \in L^{\infty}_{loc}(\mathbb{R})$ is not a polynomial (a.e.) and the closure of its points of discontinuity is of zero Lebesgue measure.

Density in $C(\mathbb{R}^n)$ for any bounded and locally Riemann-integrable activation function (Pinkus, 1999)

Theorem (Leshno et al., 1993)

 $\Sigma(\sigma)$ is dense in $C(\mathbb{R}^n)$ iff $\sigma \in L^{\infty}_{loc}(\mathbb{R})$ is not a polynomial (a.e.) and the closure of its points of discontinuity is of zero Lebesgue measure.

Density in $C(\mathbb{R}^n)$ for any bounded and locally Riemann-integrable activation function (Pinkus, 1999)

Theorem (Leshno et al., 1993)

 $\Sigma(\sigma)$ is dense in $C(\mathbb{R}^n)$ iff $\sigma \in L^{\infty}_{loc}(\mathbb{R})$ is not a polynomial (a.e.) and the closure of its points of discontinuity is of zero Lebesgue measure.

Density in $C(\mathbb{R}^n)$ for any bounded and locally Riemann-integrable activation function (Pinkus, 1999)

• A single hidden layer perceptron model can approximate arbitrarily well any continuous function of *n* variables on a compact domain

- \hookrightarrow What is the complexity of the neural network needed to guarantee some specified error?
- \hookrightarrow Does the achievable error scale in favour of the input dimension?
- \hookrightarrow Does the achievable error depend on a parameter quantifying the smoothness of the target function?

• A single hidden layer perceptron model can approximate arbitrarily well any continuous function of n variables on a compact domain

- \hookrightarrow What is the complexity of the neural network needed to guarantee some specified error?
- \hookrightarrow Does the achievable error scale in favour of the input dimension?
- \hookrightarrow Does the achievable error depend on a parameter quantifying the smoothness of the target function?

• A single hidden layer perceptron model can approximate arbitrarily well any continuous function of n variables on a compact domain

- \hookrightarrow What is the complexity of the neural network needed to guarantee some specified error?
- \hookrightarrow Does the achievable error scale in favour of the input dimension?
- \hookrightarrow Does the achievable error depend on a parameter quantifying the smoothness of the target function?

• A single hidden layer perceptron model can approximate arbitrarily well any continuous function of n variables on a compact domain

- \hookrightarrow What is the complexity of the neural network needed to guarantee some specified error?
- \hookrightarrow Does the achievable error scale in favour of the input dimension?
- \hookrightarrow Does the achievable error depend on a parameter quantifying the smoothness of the target function?

• A single hidden layer perceptron model can approximate arbitrarily well any continuous function of n variables on a compact domain

- \hookrightarrow What is the complexity of the neural network needed to guarantee some specified error?
- \hookrightarrow Does the achievable error scale in favour of the input dimension?
- \hookrightarrow Does the achievable error depend on a parameter quantifying the smoothness of the target function?

• Consider perceptron model with at most r units in the hidden layer

$$\Sigma_r(\sigma) = \left\{ \sum_{i=1}^r a_i \sigma(w_i \cdot x - \theta_i) : a_i, \theta_i \in \mathbb{R}, w_i \in \mathbb{R}^n \right\}$$

Definition (Pinkus, 1999)

For function f in a normed linear space X define the order of approximation by

$$E(f; \Sigma_r(\sigma); X) = \inf_{g \in \Sigma_r(\sigma)} \|f - g\|_X.$$

Problem: target f is unknown!

Shpresim Sadiku

 \blacksquare Consider perceptron model with at most r units in the hidden layer

$$\Sigma_r(\sigma) = \left\{ \sum_{i=1}^r \mathbf{a}_i \sigma(w_i \cdot x - \theta_i) : a_i, \theta_i \in \mathbb{R}, w_i \in \mathbb{R}^n \right\}$$

Definition (Pinkus, 1999)

For function f in a normed linear space X define the order of approximation by

$$E(f; \Sigma_r(\sigma); X) = \inf_{g \in \Sigma_r(\sigma)} \|f - g\|_X.$$

Problem: target f is unknown!

Shpresim Sadiku

ZIB

 \blacksquare Consider perceptron model with at most r units in the hidden layer

$$\Sigma_r(\sigma) = \left\{ \sum_{i=1}^r \mathbf{a}_i \sigma(w_i \cdot x - \theta_i) : a_i, \theta_i \in \mathbb{R}, w_i \in \mathbb{R}^n \right\}$$

Definition (Pinkus, 1999)

For function f in a normed linear space X define the order of approximation by

$$E(f; \Sigma_r(\sigma); X) = \inf_{g \in \Sigma_r(\sigma)} \|f - g\|_X.$$

Problem: target f is unknown!

Shpresim Sadiku

ZIB

 \blacksquare Consider perceptron model with at most r units in the hidden layer

$$\Sigma_r(\sigma) = \left\{ \sum_{i=1}^r \mathbf{a}_i \sigma(w_i \cdot x - \theta_i) : a_i, \theta_i \in \mathbb{R}, w_i \in \mathbb{R}^n \right\}$$

Definition (Pinkus, 1999)

For function f in a normed linear space X define the order of approximation by

$$E(f; \Sigma_r(\sigma); X) = \inf_{g \in \Sigma_r(\sigma)} \|f - g\|_X.$$

Problem: target f is unknown!

Shpresim Sadiku

ZIB

• Assume f is a member of the Sobolev space

$$||f||_{s,p,\mu} := \begin{cases} \left[\sum_{|\alpha| \le s} \int_{\mathbb{R}^n} |\partial^{\alpha} f|^p d\mu\right]^{1/p}, & 1 \le p < \infty \\ \max_{|\alpha| \le s} \sup_{x \in K} |\partial^{\alpha} f(x)|, & p = \infty \end{cases}$$

for compact $K \subset \mathbb{R}^n$

Consider norm one Sobolev classes

 $\mathcal{B}_p^s(B^n) := \{ f : f \in \mathcal{W}_s^p(B^n), \|f\|_{s,p,\mu} \le 1 \}$

• Assume f is a member of the Sobolev space

$$\|f\|_{s,p,\mu} := \begin{cases} \left[\sum_{|\alpha| \le s} \int_{\mathbb{R}^n} |\partial^{\alpha} f|^p d\mu\right]^{1/p}, & 1 \le p < \infty \\ \max_{|\alpha| \le s} \sup_{x \in K} |\partial^{\alpha} f(x)|, & p = \infty \end{cases}$$

for compact $K \subset \mathbb{R}^n$

Consider norm one Sobolev classes

 $\mathcal{B}_p^s(B^n) := \{ f : f \in \mathcal{W}_s^p(B^n), \|f\|_{s,p,\mu} \le 1 \}$

ZIB

 \blacksquare Assume f is a member of the Sobolev space

$$\|f\|_{s,p,\mu} := \begin{cases} \left[\sum_{|\alpha| \le s} \int_{\mathbb{R}^n} |\partial^{\alpha} f|^p d\mu\right]^{1/p}, & 1 \le p < \infty \\ \max_{|\alpha| \le s} \sup_{x \in K} |\partial^{\alpha} f(x)|, & p = \infty \end{cases}$$

for compact $K \subset \mathbb{R}^n$

Consider norm one Sobolev classes

 $\mathcal{B}_p^s(B^n) := \{ f : f \in \mathcal{W}_s^p(B^n), \|f\|_{s,p,\mu} \le 1 \}$

ZIB

 \blacksquare Assume f is a member of the Sobolev space

$$\mathcal{W}_{s}^{p}(B^{n}) := \{ f \in L^{p}(B^{n}) : \partial^{\alpha} f \in L^{p}(B^{n}), \forall |\alpha| \leq s \},$$

for $1 \leq p \leq \infty, s \in \mathbb{N}$, and B^{n} the unit ball in \mathbb{R}^{n}
 $\mathbf{W}_{s}^{p}(B^{n})$ may be defined as the completion of $C^{s}(B^{n})$ w.r.t. norm

$$||f||_{s,p,\mu} := \begin{cases} \left[\sum_{|\alpha| \le s} \int_{\mathbb{R}^n} |\partial^{\alpha} f|^p d\mu\right]^{1/p}, & 1 \le p < \infty \\ \max_{|\alpha| \le s} \sup_{x \in K} |\partial^{\alpha} f(x)|, & p = \infty \end{cases}$$

for compact $K \subset \mathbb{R}^n$

Consider norm one Sobolev classes

$$\mathcal{B}_p^s(B^n) := \{ f : f \in \mathcal{W}_s^p(B^n), \|f\|_{s,p,\mu} \le 1 \}$$

• Consider the more general class of *ridge* functions

$$\mathcal{R}_r(\sigma) = \left\{ \sum_{i=1}^r \sigma_i(w_i \cdot x) : \sigma_i \in C(\mathbb{R}), w_i \in \mathbb{R}^n, i = 1, ..., r \right\}$$

• Since $\Sigma_r(\sigma) \subset \mathcal{R}_r$ for every $\sigma \in C(\mathbb{R})$

$$E(f; \Sigma_r(\sigma); X) = \inf_{g \in \Sigma_r(\sigma)} \|f - g\|_X \ge \inf_{g \in \mathcal{R}_r(\sigma)} \|f - g\|_X = E(f; \mathcal{R}_r(\sigma); X)$$

Theorem (Maiorov, 1999)

For each $n \ge 2$ and $s \ge 1$,

$$E(\mathcal{B}_2^s; \mathcal{R}_r; L_2) = \sup_{f \in \mathcal{B}_2^s} E(f; \mathcal{R}_r; L_2) \asymp r^{-s/(n-1)}$$

 \blacksquare Consider the more general class of ridge functions

$$\mathcal{R}_r(\sigma) = \left\{ \sum_{i=1}^r \sigma_i(w_i \cdot x) : \sigma_i \in C(\mathbb{R}), w_i \in \mathbb{R}^n, i = 1, ..., r \right\}$$

• Since $\Sigma_r(\sigma) \subset \mathcal{R}_r$ for every $\sigma \in C(\mathbb{R})$

$$E(f; \Sigma_r(\sigma); X) = \inf_{g \in \Sigma_r(\sigma)} \|f - g\|_X \ge \inf_{g \in \mathcal{R}_r(\sigma)} \|f - g\|_X = E(f; \mathcal{R}_r(\sigma); X)$$

Theorem (Maiorov, 1999)

For each $n \ge 2$ and $s \ge 1$,

$$E(\mathcal{B}_2^s; \mathcal{R}_r; L_2) = \sup_{f \in \mathcal{B}_2^s} E(f; \mathcal{R}_r; L_2) \asymp r^{-s/(n-1)}$$

Shpresim Sadiku

 \blacksquare Consider the more general class of ridge functions

$$\mathcal{R}_r(\sigma) = \left\{ \sum_{i=1}^r \sigma_i(w_i \cdot x) : \sigma_i \in C(\mathbb{R}), w_i \in \mathbb{R}^n, i = 1, ..., r \right\}$$

• Since $\Sigma_r(\sigma) \subset \mathcal{R}_r$ for every $\sigma \in C(\mathbb{R})$

$$E(f; \Sigma_r(\sigma); X) = \inf_{g \in \Sigma_r(\sigma)} \|f - g\|_X \ge \inf_{g \in \mathcal{R}_r(\sigma)} \|f - g\|_X = E(f; \mathcal{R}_r(\sigma); X)$$

Theorem (Maiorov, 1999)

For each $n \ge 2$ and $s \ge 1$,

$$E(\mathcal{B}_2^s; \mathcal{R}_r; L_2) = \sup_{f \in \mathcal{B}_2^s} E(f; \mathcal{R}_r; L_2) \asymp r^{-s/(n-1)}$$

Shpresim Sadiku

 \blacksquare Consider the more general class of ridge functions

$$\mathcal{R}_r(\sigma) = \left\{ \sum_{i=1}^r \sigma_i(w_i \cdot x) : \sigma_i \in C(\mathbb{R}), w_i \in \mathbb{R}^n, i = 1, ..., r \right\}$$

• Since $\Sigma_r(\sigma) \subset \mathcal{R}_r$ for every $\sigma \in C(\mathbb{R})$

$$E(f; \Sigma_r(\sigma); X) = \inf_{g \in \Sigma_r(\sigma)} \|f - g\|_X \ge \inf_{g \in \mathcal{R}_r(\sigma)} \|f - g\|_X = E(f; \mathcal{R}_r(\sigma); X)$$

Theorem (Maiorov, 1999)

For each $n \ge 2$ and $s \ge 1$,

$$E(\mathcal{B}_2^s; \mathcal{R}_r; L_2) = \sup_{f \in \mathcal{B}_2^s} E(f; \mathcal{R}_r; L_2) \asymp r^{-s/(n-1)}$$

Shpresim Sadiku

- The upper bound $r^{-s/(n-1)}$ valid for $E(\mathcal{B}_p^s; \Sigma_r(\sigma); L_p)$ for a $\sigma \in C^{\infty}$, sigmoidal and strictly increasing (Pinkus, 1999)
- Denote H_k the linear space of homogeneous polynomials of degree k (in \mathbb{R}^n) and $P_k = \bigcup_{s=0}^k H_s$ the linear space of polynomials of degree at most k
- 2 Set dim $H_k = r = \binom{n-1+k}{k} \asymp k^{n-1}$
- **3** But $E(\mathcal{B}_p^s; P_k; L_p) \le Ck^{-s} \le Cr^{-s/(n-1)}$

Question:

ZIB

 \hookrightarrow Why is it worth using neural networks?

Shpresim Sadiku

- The upper bound $r^{-s/(n-1)}$ valid for $E(\mathcal{B}_p^s; \Sigma_r(\sigma); L_p)$ for a $\sigma \in C^{\infty}$, sigmoidal and strictly increasing (Pinkus, 1999)
- Denote H_k the linear space of homogeneous polynomials of degree k (in \mathbb{R}^n) and $P_k = \bigcup_{s=0}^k H_s$ the linear space of polynomials of degree at most k
- 2 Set dim $H_k = r = \binom{n-1+k}{k} \asymp k^{n-1}$ 3 But $E(\mathcal{B}_p^s; P_k; L_p) \le Ck^{-s} \le Cr^{-s/(n-1)}$

Question:

ZIB

 \hookrightarrow Why is it worth using neural networks?

Shpresim Sadiku

- The upper bound $r^{-s/(n-1)}$ valid for $E(\mathcal{B}_p^s; \Sigma_r(\sigma); L_p)$ for a $\sigma \in C^{\infty}$, sigmoidal and strictly increasing (Pinkus, 1999)
- Denote H_k the linear space of homogeneous polynomials of degree k (in \mathbb{R}^n) and $P_k = \bigcup_{s=0}^k H_s$ the linear space of polynomials of degree at most k
- 2 Set dim $H_k = r = \binom{n-1+k}{k} \asymp k^{n-1}$

3 But $E(\mathcal{B}_p^s; P_k; L_p) \le Ck^{-s} \le Cr^{-s/(n-1)}$

Question:

ZIB

 \hookrightarrow Why is it worth using neural networks?

Shpresim Sadiku

- The upper bound $r^{-s/(n-1)}$ valid for $E(\mathcal{B}_p^s; \Sigma_r(\sigma); L_p)$ for a $\sigma \in C^{\infty}$, sigmoidal and strictly increasing (Pinkus, 1999)
- Denote H_k the linear space of homogeneous polynomials of degree k (in \mathbb{R}^n) and $P_k = \bigcup_{s=0}^k H_s$ the linear space of polynomials of degree at most k
- 2 Set dim $H_k = r = \binom{n-1+k}{k} \asymp k^{n-1}$
- **3** But $E(\mathcal{B}_p^s; P_k; L_p) \le Ck^{-s} \le Cr^{-s/(n-1)}$

Question:

ZIBJ

 \hookrightarrow Why is it worth using neural networks?

Shpresim Sadiku

- The upper bound $r^{-s/(n-1)}$ valid for $E(\mathcal{B}_p^s; \Sigma_r(\sigma); L_p)$ for a $\sigma \in C^{\infty}$, sigmoidal and strictly increasing (Pinkus, 1999)
- Denote H_k the linear space of homogeneous polynomials of degree k (in \mathbb{R}^n) and $P_k = \bigcup_{s=0}^k H_s$ the linear space of polynomials of degree at most k
- 2 Set dim $H_k = r = \binom{n-1+k}{k} \asymp k^{n-1}$
- **3** But $E(\mathcal{B}_p^s; P_k; L_p) \le Ck^{-s} \le Cr^{-s/(n-1)}$

Question:

ZIB /

\hookrightarrow Why is it worth using neural networks?

Shpresim Sadiku

- The approximation error in practice does not depend only on the order of approximation, but also on other factors (i.e., the method of approximation)
- Consider networks with parameters which depend continuously on the target function

Theorem (Maiorov, 1999)

Let $Q_r: L_p \to \Sigma_r(\sigma)$ be an approximating method where the network parameters c_i, θ_i and w_i are continuously dependent on the target function $f \in L_p$. Then

$$\sup_{f \in \mathcal{B}_p^s} \|f - Q_r(f)\|_p \ge Cr^{-s/n}$$

- The approximation error in practice does not depend only on the order of approximation, but also on other factors (i.e., the method of approximation)
- Consider networks with parameters which depend continuously on the target function

Theorem (Maiorov, 1999)

Let $Q_r: L_p \to \Sigma_r(\sigma)$ be an approximating method where the network parameters c_i, θ_i and w_i are continuously dependent on the target function $f \in L_p$. Then

$$\sup_{f \in \mathcal{B}_p^s} \|f - Q_r(f)\|_p \ge Cr^{-s/n}$$

- The approximation error in practice does not depend only on the order of approximation, but also on other factors (i.e., the method of approximation)
- Consider networks with parameters which depend continuously on the target function

Theorem (Maiorov, 1999)

Let $Q_r: L_p \to \Sigma_r(\sigma)$ be an approximating method where the network parameters c_i, θ_i and w_i are continuously dependent on the target function $f \in L_p$. Then

$$\sup_{f \in \mathcal{B}_p^s} \|f - Q_r(f)\|_p \ge Cr^{-s/n}$$

- The approximation error in practice does not depend only on the order of approximation, but also on other factors (i.e., the method of approximation)
- Consider networks with parameters which depend continuously on the target function

Theorem (Maiorov, 1999)

Let $Q_r: L_p \to \Sigma_r(\sigma)$ be an approximating method where the network parameters c_i, θ_i and w_i are continuously dependent on the target function $f \in L_p$. Then

$$\sup_{f \in \mathcal{B}_p^s} \|f - Q_r(f)\|_p \ge Cr^{-s/n}$$

Relax the continuity assumption on the approximation procedure for specific σ (e.g. logistic sigmoid) (Maiorov et al., 2000)

Theorem (Petrushev, 1998)

For σ the ReLU function,

$$E(\mathcal{B}_2^s; \Sigma_r(\sigma); L_2) \le Cr^{-s/n}$$

for $s = 1, ..., \frac{n+3}{2}$.

• Curse of Dimensionality - the number of units in the hidden layer necessary for fixed accuracy ϵ is in the order $\mathcal{O}(\epsilon^{-n/s})$

Relax the continuity assumption on the approximation procedure for specific σ (e.g. logistic sigmoid) (Maiorov et al., 2000)

```
Theorem (Petrushev, 1998)
For \sigma the ReLU function,
E(\mathcal{B}_2^s; \Sigma_r(\sigma); L_2) \leq Cr^{-s/n}
for s = 1, ..., \frac{n+3}{2}.
```

Curse of Dimensionality - the number of units in the hidden layer necessary for fixed accuracy ϵ is in the order $\mathcal{O}(\epsilon^{-n/s})$

Relax the continuity assumption on the approximation procedure for specific σ (e.g. logistic sigmoid) (Maiorov et al., 2000)

Theorem (Petrushev, 1998)

For σ the ReLU function,

$$E(\mathcal{B}_2^s; \Sigma_r(\sigma); L_2) \le Cr^{-s/n}$$

for $s = 1, ..., \frac{n+3}{2}$.

Curse of Dimensionality - the number of units in the hidden layer necessary for fixed accuracy ϵ is in the order $\mathcal{O}(\epsilon^{-n/s})$

Relax the continuity assumption on the approximation procedure for specific σ (e.g. logistic sigmoid) (Maiorov et al., 2000)

Theorem (Petrushev, 1998)

For σ the ReLU function,

$$E(\mathcal{B}_2^s; \Sigma_r(\sigma); L_2) \le Cr^{-s/n}$$

for $s = 1, ..., \frac{n+3}{2}$.

Curse of Dimensionality - the number of units in the hidden layer necessary for fixed accuracy ϵ is in the order $\mathcal{O}(\epsilon^{-n/s})$

Circumventing the Curse of Dimensionality with Deep Neural Networks

Deep neural networks - generalisation of shallow neural networks
Theoretical accuracy achievable with deep or shallow networks is the same

Questions:

- \hookrightarrow Why are deep neural networks so widespread, even though it is harder to train them due to their depth?
- \hookrightarrow Does the multi-layer architecture of deep neural networks help in breaking the curse of dimensionality?

- Deep neural networks generalisation of shallow neural networks
- Theoretical accuracy achievable with deep or shallow networks is the same

Questions:

- \hookrightarrow Why are deep neural networks so widespread, even though it is harder to train them due to their depth?
- \hookrightarrow Does the multi-layer architecture of deep neural networks help in breaking the curse of dimensionality?

- Deep neural networks generalisation of shallow neural networks
- Theoretical accuracy achievable with deep or shallow networks is the same

Questions:

ZIB

- \hookrightarrow Why are deep neural networks so widespread, even though it is harder to train them due to their depth?
- \hookrightarrow Does the multi-layer architecture of deep neural networks help in breaking the curse of dimensionality?

- Deep neural networks generalisation of shallow neural networks
- Theoretical accuracy achievable with deep or shallow networks is the same

Questions:

ZIB

- \hookrightarrow Why are deep neural networks so widespread, even though it is harder to train them due to their depth?
- \hookrightarrow Does the multi-layer architecture of deep neural networks help in breaking the curse of dimensionality?

- Deep neural networks generalisation of shallow neural networks
- Theoretical accuracy achievable with deep or shallow networks is the same

Questions:

ZIB /

- $\label{eq:why are deep neural networks so widespread, even though it is harder to train them due to their depth? }$
- \hookrightarrow Does the multi-layer architecture of deep neural networks help in breaking the curse of dimensionality?

- Deep neural networks generalisation of shallow neural networks
- Theoretical accuracy achievable with deep or shallow networks is the same

Questions:

ZIB /

- $\label{eq:why are deep neural networks so widespread, even though it is harder to train them due to their depth? }$
- \hookrightarrow Does the multi-layer architecture of deep neural networks help in breaking the curse of dimensionality?
- (Poggio et al., 2017) succeed in beating the curse of dimensionality by assuming the target function is *compositional*

$\mathcal{G}-function$

ZIB

Definition (Poggio et al., 2017)

Let \mathcal{G} be a directed acyclic graph (DAG) with the set of nodes V. Define a \mathcal{G} -function $f : \mathbb{R}^n \to \mathbb{R}$ with an architecture corresponding to \mathcal{G} , where each of the *n* source nodes of \mathcal{G} represents a one dimensional input of *f*. Inner nodes of \mathcal{G} represent constituent functions which get one real one-dimensional input from every incoming edge and the outgoing edges feed the one dimensional function value to the next node. There is only one sink node, whose output is the \mathcal{G} -function.

Definition (Poggio et al., 2017)

Define $\mathcal{B}_p^{s,2}$ to be the class of compositional functions $f : \mathbb{R}^n \to \mathbb{R}$ whose corresponding DAG \mathcal{G} has a binary tree architecture and constituent functions h are in $\mathcal{B}_p^s(\mathbb{R}^2)$.

$\mathcal{G}-function$

ZIB

Definition (Poggio et al., 2017)

Let \mathcal{G} be a directed acyclic graph (DAG) with the set of nodes V. Define a \mathcal{G} -function $f : \mathbb{R}^n \to \mathbb{R}$ with an architecture corresponding to \mathcal{G} , where each of the *n* source nodes of \mathcal{G} represents a one dimensional input of *f*. Inner nodes of \mathcal{G} represent constituent functions which get one real one-dimensional input from every incoming edge and the outgoing edges feed the one dimensional function value to the next node. There is only one sink node, whose output is the \mathcal{G} -function.

Definition (Poggio et al., 2017)

Define $\mathcal{B}_p^{s,2}$ to be the class of compositional functions $f : \mathbb{R}^n \to \mathbb{R}$ whose corresponding DAG \mathcal{G} has a binary tree architecture and constituent functions h are in $\mathcal{B}_p^s(\mathbb{R}^2)$.

$\mathcal{G}-function$

ZIB

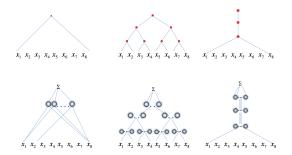
Definition (Poggio et al., 2017)

Let \mathcal{G} be a directed acyclic graph (DAG) with the set of nodes V. Define a \mathcal{G} -function $f : \mathbb{R}^n \to \mathbb{R}$ with an architecture corresponding to \mathcal{G} , where each of the *n* source nodes of \mathcal{G} represents a one dimensional input of *f*. Inner nodes of \mathcal{G} represent constituent functions which get one real one-dimensional input from every incoming edge and the outgoing edges feed the one dimensional function value to the next node. There is only one sink node, whose output is the \mathcal{G} -function.

Definition (Poggio et al., 2017)

Define $\mathcal{B}_p^{s,2}$ to be the class of compositional functions $f : \mathbb{R}^n \to \mathbb{R}$ whose corresponding DAG \mathcal{G} has a binary tree architecture and constituent functions h are in $\mathcal{B}_p^s(\mathbb{R}^2)$.

Compositional Functions



Graphs in the top row represent \mathcal{G} -functions of 8 variables. Each graph on the bottom row shows the optimal network architecture approximating the function above.

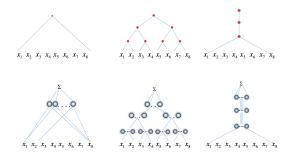
• Compositional function with a binary tree architecture

$$f(x_1, x_2, x_3, x_4) = h(h_1(x_1, x_2), h_2(x_3, x_4))$$
(1)

Dimensionality of constituent functions \ll overall input dimension

Shpresim Sadiku

Compositional Functions



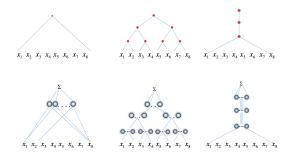
Graphs in the top row represent \mathcal{G} -functions of 8 variables. Each graph on the bottom row shows the optimal network architecture approximating the function above.

• Compositional function with a binary tree architecture

$$f(x_1, x_2, x_3, x_4) = h(h_1(x_1, x_2), h_2(x_3, x_4))$$
(1)

Dimensionality of constituent functions \ll overall input dimension

Compositional Functions



Graphs in the top row represent \mathcal{G} -functions of 8 variables. Each graph on the bottom row shows the optimal network architecture approximating the function above.

• Compositional function with a binary tree architecture

$$f(x_1, x_2, x_3, x_4) = h(h_1(x_1, x_2), h_2(x_3, x_4))$$
(1)

■ Dimensionality of constituent functions ≪ overall input dimension

Effective dimension

Definition (Poggio et al., 2017)

The effective dimension of a function class X is said to be the smallest positive integer k if for every $\epsilon > 0$, any function in X can be approximated up to accuracy ϵ by a neural network of ϵ^{-k} parameters.

\mathcal{B}_p^s(\mathbb{R}^n) has effective dimension $\frac{n}{s}$

Theorem (Poggio et al., 2017)

For $f \in \mathcal{B}_2^{s,2}$ consider a deep network with the same compositional architecture and $\sigma \in C^{\infty}$ which is not a polynomial. The complexity of the network to achieve accuracy at least ϵ in the supremum norm is

$$\mathcal{O}\left((n-1)\epsilon^{-2/s}\right).$$

Effective dimension

Definition (Poggio et al., 2017)

The effective dimension of a function class X is said to be the smallest positive integer k if for every $\epsilon > 0$, any function in X can be approximated up to accuracy ϵ by a neural network of ϵ^{-k} parameters.

\mathcal{B}_p^s(\mathbb{R}^n) has effective dimension $\frac{n}{s}$

Theorem (Poggio et al., 2017)

For $f \in \mathcal{B}_2^{s,2}$ consider a deep network with the same compositional architecture and $\sigma \in C^{\infty}$ which is not a polynomial. The complexity of the network to achieve accuracy at least ϵ in the supremum norm is

$$\mathcal{O}\left((n-1)\epsilon^{-2/s}\right)$$
 .

Effective dimension

ZIB

Definition (Poggio et al., 2017)

The effective dimension of a function class X is said to be the smallest positive integer k if for every $\epsilon > 0$, any function in X can be approximated up to accuracy ϵ by a neural network of ϵ^{-k} parameters.

• $\mathcal{B}_p^s(\mathbb{R}^n)$ has effective dimension $\frac{n}{s}$

Theorem (Poggio et al., 2017)

For $f \in \mathcal{B}_2^{s,2}$ consider a deep network with the same compositional architecture and $\sigma \in C^{\infty}$ which is not a polynomial. The complexity of the network to achieve accuracy at least ϵ in the supremum norm is

$$\mathcal{O}\left((n-1)\epsilon^{-2/s}\right).$$

Effective dimension

ZIB

Definition (Poggio et al., 2017)

The effective dimension of a function class X is said to be the smallest positive integer k if for every $\epsilon > 0$, any function in X can be approximated up to accuracy ϵ by a neural network of ϵ^{-k} parameters.

•
$$\mathcal{B}_p^s(\mathbb{R}^n)$$
 has effective dimension $\frac{n}{s}$

Theorem (Poggio et al., 2017)

For $f \in \mathcal{B}_2^{s,2}$ consider a deep network with the same compositional architecture and $\sigma \in C^{\infty}$ which is not a polynomial. The complexity of the network to achieve accuracy at least ϵ in the supremum norm is

$$\mathcal{O}\left((n-1)\epsilon^{-2/s}\right).$$

- Each constituent function is in $\mathcal{B}_p^s(\mathbb{R}^2)$, hence it can be approximated by an element of $\Sigma_r(\sigma)$ with accuracy $\epsilon = cr^{-s/2}$
- 2 $f \in \mathcal{B}_p^{s,2}$, hence each of the constituent functions is Lipschitz continuous
- **3** E.g. for the function f(1) and approximators to level $\epsilon p, p_1, p_2$ of h, h_1, h_2

$$||h(h_1, h_2) - p(p_1, p_2)||$$

$$= ||h(h_1, h_2) - h(p_1, p_2) + h(p_1, p_2) - p(p_1, p_2)||$$

$$\leq ||h(h_1, h_2) - h(p_1, p_2)|| + ||h(p_1, p_2) - p(p_1, p_2)||$$

$$\leq c\epsilon$$

4 There are n-1 such nodes

Shpresim Sadiku

- Each constituent function is in $\mathcal{B}_p^s(\mathbb{R}^2)$, hence it can be approximated by an element of $\Sigma_r(\sigma)$ with accuracy $\epsilon = cr^{-s/2}$
- 2 $f \in \mathcal{B}_p^{s,2}$, hence each of the constituent functions is Lipschitz continuous
- **B** E.g. for the function f(1) and approximators to level $\epsilon p, p_1, p_2$ of h, h_1, h_2

$$\|h(h_1, h_2) - p(p_1, p_2)\| \\ = \|h(h_1, h_2) - h(p_1, p_2) + h(p_1, p_2) - p(p_1, p_2)\| \\ \le \|h(h_1, h_2) - h(p_1, p_2)\| + \|h(p_1, p_2) - p(p_1, p_2)\| \\ \le c\epsilon$$

4 There are n-1 such nodes

Shpresim Sadiku

ZIB /

Neural Network Approximation Theory

- Each constituent function is in $\mathcal{B}_p^s(\mathbb{R}^2)$, hence it can be approximated by an element of $\Sigma_r(\sigma)$ with accuracy $\epsilon = cr^{-s/2}$
- 2 $f \in \mathcal{B}_p^{s,2}$, hence each of the constituent functions is Lipschitz continuous
- **B** E.g. for the function f(1) and approximators to level $\epsilon p, p_1, p_2$ of h, h_1, h_2

$$||h(h_1, h_2) - p(p_1, p_2)||$$

$$= ||h(h_1, h_2) - h(p_1, p_2) + h(p_1, p_2) - p(p_1, p_2)||$$

$$\leq ||h(h_1, h_2) - h(p_1, p_2)|| + ||h(p_1, p_2) - p(p_1, p_2)||$$

$$\leq c\epsilon$$

4 There are n-1 such nodes

Shpresim Sadiku

- Each constituent function is in $\mathcal{B}_p^s(\mathbb{R}^2)$, hence it can be approximated by an element of $\Sigma_r(\sigma)$ with accuracy $\epsilon = cr^{-s/2}$
- 2 $f \in \mathcal{B}_p^{s,2}$, hence each of the constituent functions is Lipschitz continuous
- **3** E.g. for the function f (1) and approximators to level $\epsilon p, p_1, p_2$ of h, h_1, h_2

$$\begin{aligned} &\|h(h_1, h_2) - p(p_1, p_2)\| \\ &= \|h(h_1, h_2) - h(p_1, p_2) + h(p_1, p_2) - p(p_1, p_2)\| \\ &\leq \|h(h_1, h_2) - h(p_1, p_2)\| + \|h(p_1, p_2) - p(p_1, p_2)\| \\ &\leq c\epsilon \end{aligned}$$

4 There are n-1 such nodes

Shpresim Sadiku

- Each constituent function is in $\mathcal{B}_p^s(\mathbb{R}^2)$, hence it can be approximated by an element of $\Sigma_r(\sigma)$ with accuracy $\epsilon = cr^{-s/2}$
- 2 $f \in \mathcal{B}_p^{s,2}$, hence each of the constituent functions is Lipschitz continuous
- **3** E.g. for the function f (1) and approximators to level $\epsilon p, p_1, p_2$ of h, h_1, h_2

$$\begin{aligned} &\|h(h_1, h_2) - p(p_1, p_2)\| \\ &= \|h(h_1, h_2) - h(p_1, p_2) + h(p_1, p_2) - p(p_1, p_2)\| \\ &\leq \|h(h_1, h_2) - h(p_1, p_2)\| + \|h(p_1, p_2) - p(p_1, p_2)\| \\ &\leq c\epsilon \end{aligned}$$

4 There are n-1 such nodes

Breaking the Curse of Dimensionality with DNNs

Theorem (Poggio et al., 2017)

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a compositional \mathcal{G} -function corresponding to a DAG \mathcal{G} with nodes V where each constituent function represented by node $v \in V$ is in $\mathcal{B}_{p^v}^{s_v}(\mathbb{R}^{n_v})$ for n_v the number of incoming edges of v. Then for $\sigma \in C^{\infty}$, the complexity of the shallow network to achieve accuracy at least ϵ in the supremum norm is

$$\mathcal{O}\left(\epsilon^{-n/min_{v\in V}s_v}\right)$$

while the complexity of a deep network represented by ${\mathcal G}$ in the supremum norm is

$$\mathcal{O}\left(\sum_{v\in V} \epsilon^{-n_v/s_v}\right).$$

Breaking the Curse of Dimensionality with DNNs

Theorem (Poggio et al., 2017)

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a compositional \mathcal{G} -function corresponding to a DAG \mathcal{G} with nodes V where each constituent function represented by node $v \in V$ is in $\mathcal{B}_{p}^{s_v}(\mathbb{R}^{n_v})$ for n_v the number of incoming edges of v. Then for $\sigma \in C^{\infty}$, the complexity of the shallow network to achieve accuracy at least ϵ in the supremum norm is

$$\mathcal{O}\left(\epsilon^{-n/min_{v\in V}s_v}\right)$$

while the complexity of a deep network represented by ${\mathcal G}$ in the supremum norm is

$$\mathcal{O}\left(\sum_{v\in V} \epsilon^{-n_v/s_v}\right).$$

Breaking the Curse of Dimensionality (cont.)

- If the effective dimensionality of constituent functions is smaller than the effective dimensionality of the shallow network $\frac{n}{\min_{v \in V} s_v}$, then deep networks avoid the curse of dimensionality
- Extensions to the ReLU activation function (Bach, 2017)
- (Poggio et al., 2017) conjecture that compositional functions are common in nature and describe the structure of the brain (i.e., visual cortex)

Breaking the Curse of Dimensionality (cont.)

- If the effective dimensionality of constituent functions is smaller than the effective dimensionality of the shallow network $\frac{n}{\min_{v \in V} s_v}$, then deep networks avoid the curse of dimensionality
- Extensions to the ReLU activation function (Bach, 2017)
- (Poggio et al., 2017) conjecture that compositional functions are common in nature and describe the structure of the brain (i.e., visual cortex)

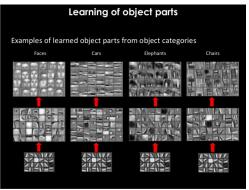
Breaking the Curse of Dimensionality (cont.)

- If the effective dimensionality of constituent functions is smaller than the effective dimensionality of the shallow network $\frac{n}{\min_{v \in V} s_v}$, then deep networks avoid the curse of dimensionality
- Extensions to the ReLU activation function (Bach, 2017)
- (Poggio et al., 2017) conjecture that compositional functions are common in nature and describe the structure of the brain (i.e., visual cortex)

Deep vs Shallow

Deep networks learn 'features' of 'features' - better generalization

• A shallow network tends to memorize the data



from: Understanding and Improving Deep Learning Algorithms, Yoshua Bengio, ML Google Distin-

guished Lecture, 2010

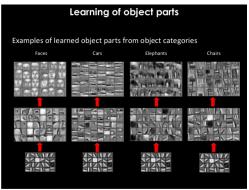
Shpresim Sadiku

Neural Network Approximation Theory

Deep vs Shallow

ZIB

- Deep networks learn 'features' of 'features' better generalization
- A shallow network tends to memorize the data



from: Understanding and Improving Deep Learning Algorithms, Yoshua Bengio, ML Google Distin-

guished Lecture, 2010

Shpresim Sadiku

Neural Network Approximation Theory

Related work

- The number of linear regions that can be synthesized by a deep network with ReLU nonlinearities is much larger than by a shallow network (Bengio et al., 2014)
- Examples of specific functions that cannot be represented efficiently by shallow networks (Telgarsky, 2015, Shamir et al., 2016)
- Approximation with sparsely connected deep networks (Bölcskei et al., 2019)

Related work

- The number of linear regions that can be synthesized by a deep network with ReLU nonlinearities is much larger than by a shallow network (Bengio et al., 2014)
- Examples of specific functions that cannot be represented efficiently by shallow networks (Telgarsky, 2015, Shamir et al., 2016)
- Approximation with sparsely connected deep networks (Bölcskei et al., 2019)

Related work

- The number of linear regions that can be synthesized by a deep network with ReLU nonlinearities is much larger than by a shallow network (Bengio et al., 2014)
- Examples of specific functions that cannot be represented efficiently by shallow networks (Telgarsky, 2015, Shamir et al., 2016)
- Approximation with sparsely connected deep networks (Bölcskei et al., 2019)