## Wavelet-based Low Frequency Adversarial Attacks

#### Shpresim Sadiku

(Technische Universität Berlin & Zuse Institute Berlin)



#### BMS - BGSMath Junior Meeting $\cdot$ September 7, 2022





### Three Problems in Deep Learning



from: Mathematics of Deep Learning, René Vidal, DeepMath Plenary Lecture, 2020





### The Three Problems are interrelated

 $\hookrightarrow$  Easier to optimize some architectures than others (Haeffele et al., 2017)

 $\hookrightarrow$  Generalization is strongly affected by architecture (Zhang et al., 2017)

 $\hookrightarrow$  Optimization can impact generalization (Neyshabur et al., 2015, Zhou and Feng, 2017)







## Error Decomposition

$$R(f) - R^* = \underbrace{(R(f) - R(\hat{f}))}_{\text{optimization error}} + \underbrace{(R(\hat{f}) - R_{\mathcal{F}})}_{\text{estimation error}} + \underbrace{(R_{\mathcal{F}} - R^*)}_{\text{approximation error}}$$

$$\begin{split} R(f) &- \text{risk of a hypothesis } f \\ R^* &= \inf_f R(f) - \text{Bayes risk} \\ \hat{f} &- \text{minimizer of the empirical risk } \hat{R}(f) \end{split}$$

Interplay of

- 2 Generalization
  - ( $\hookrightarrow$  Statistics, Learning Theory, Stochastics,...)
- 3 Expressivity
  - $(\hookrightarrow$  Approximation Theory, Applied Harmonic Analysis,...)





# Generalization

Joint work

- Moritz Wagner (TU Berlin & ZIB)
- Sebastian Pokutta (TU Berlin & ZIB)





### Image Representations

- Discrete Fourier Transform (DFT) basis
- Discrete Wavelet Transform (DWT) basis
  - $\hookrightarrow$  Captures frequency and location information
  - $\hookrightarrow$  Signals represented in the DWT basis have approximately sparse representations (Kutyniok and Lim, 2011)





Figure 1: ImageNet image example and its 2D DWT representation.





## Multiresolution Analysis (MRA)

#### Definition (Mallat, 1999)

An orthonormal Multiresolution Analysis (MRA) of  $L^2(\mathbb{R})$  is an ordered chain of closed subspaces  $\cdots \subseteq V_{-1} \subseteq V_0 \subseteq V_1 \subseteq \cdots$ , satisfying

- 2 Dyadic Similarity (DS)  $\hookrightarrow u(x) \in V_j \text{ iff } u(2x) \in V_{j+1}$
- Translation Seed (TS)  $\hookrightarrow$  There exists  $\varphi \in V_0$  such that  $(\varphi(x-k))_{k \in \mathbb{Z}}$  is an orthonormal basis (ONB) of  $V_0$





## Father Wavelet

### Definition (Mallat, 1999)

A function  $\varphi$  is defined as a father wavelet if  $\varphi$  generates an MRA.

#### Lemma

Let  $\{V_i\}_{i\in\mathbb{Z}}$  denote an MRA of  $L^2(\mathbb{R})$ . Then for  $\varphi_{j,k}(x) := 2^{\frac{j}{2}} \varphi(2^j x - k), j, k \in \mathbb{Z}$ , the  $\{\varphi_{j,k}\}_{k\in\mathbb{Z}}$  form an ONB of  $V_j$ .

⇒ Scaled translates of φ are sufficient to represent all of L<sup>2</sup>
Signal u ∈ L<sup>2</sup>(ℝ) can be approximated by its projection u<sub>j</sub> = P<sub>j</sub>u = ∑<sub>k</sub>⟨u, φ<sub>j,k</sub>⟩φ<sub>j,k</sub> onto V<sub>j</sub>

- E.g.  $P_j: V_{j+1} \to V_j$ . Details of  $u_{j+1} \in V_{j+1}$ :  $u_{j+1} - P_j u_{j+1} = (I - P_j) u_{j+1}$
- Space of details  $W_j := \{(I P_j)u_{j+1} | u_{j+1} \in V_{j+1}\}$ , i.e.,  $P_jW_j = \{0\}$ , thus  $V_{j+1} = V_j \oplus W_j$





#### Mother Wavelet

• (DS): 
$$\eta(x) \in W_j \iff \eta(2x) \in W_{j+1}$$
  
• (C):  $L^2(\mathbb{R}) = \overline{V_0 \oplus \left(\bigoplus_{j=0}^{\infty} W_j\right)}$ 

 $\hookrightarrow$  An element  $u \in L^2(\mathbb{R})$  is the accumulated effect of its details

A mother wavelet is a function ψ ∈ W<sub>0</sub> orthogonal to the father wavelet such that {ψ(x - k)}<sub>k∈Z</sub> form an ONB of W<sub>0</sub>
(DS): {ψ<sub>j,k</sub> = 2<sup>j/2</sup>ψ(2<sup>j</sup>x - k)|k ∈ Z} - ONB of W<sub>j</sub> {ψ<sub>j,k</sub> = 2<sup>j/2</sup>ψ(2<sup>j</sup>x - k)|j, k ∈ Z} - ONB of L<sup>2</sup>(ℝ)
⇔ u(x) = ∑<sub>k</sub> (u, φ<sub>0,k</sub>) φ<sub>0,k</sub>(x) + ∑<sub>j=0</sub><sup>∞</sup> ∑<sub>k</sub> (u, ψ<sub>j,k</sub>) ψ<sub>j,k</sub>(x) approx coeffs





### 2D Discrete Wavelet Transform (DWT)

• Generalization of the 1D MRA into  $L^2(\mathbb{Z}^2)$ 

$$\blacksquare$$
 Define  $\psi^1=\varphi\psi, \psi^2=\psi\varphi$  and  $\psi^3=\psi\psi$  where

$$\psi_{j,(n_1,n_2)}^k(t_1,t_2) = 2^{j/2} \psi^k((2^j n_1 - t_1)/2^j, (2^j n_2 - t_2)/2^j), k \in \{1,2,3\}$$

 $\hookrightarrow \{\psi_{j,n}^1,\psi_{j,n}^2,\psi_{j,n}^3\}_{j,n\in\mathbb{Z}^2}$ - ONB for  $L^2(\mathbb{Z}^2)$  (Santamaria P. et al., 2021)

• Denote scaling function  $\varphi$  by  $H_0$  and mother wavelet by  $H_1$ 



Figure 2: DWT decomposition tree for a basketball image from ImageNet dataset





## Adversarial Attacks

- Input image  $\mathbf{x} \in \mathcal{X} := [0, 1]^{n \times c}$  of correct label t
- Neural network classifier  $f_{\theta} : [0, 1]^{n \times c} \to \mathbb{R}^k$ + Softmax and classification loss  $L(\theta, \mathbf{x}, t)$
- Adversarial attack problem (Szegedy et al., 2013)

$$\max_{\hat{\mathbf{x}} \in \mathcal{X}: \|\hat{\mathbf{x}} - \mathbf{x}\|_{p} \le \varepsilon} L(\theta, \underbrace{\hat{\mathbf{x}}}_{\text{adv}}, t)$$

Reformulate by defining  $\mathbf{r} := \hat{\mathbf{x}} - \mathbf{x}$ 

$$\max_{\|\mathbf{r}\|_{p} \le \varepsilon} L(\theta, \mathbf{x} + \mathbf{r}, t)$$





## Adversarial Attack Methods

■ Fast Gradient Sign Method (FGSM)

$$\hat{\mathbf{x}} = \operatorname{clip}_{\mathcal{X}}(\mathbf{x} + \varepsilon \operatorname{sign}(\nabla_{\mathbf{x}} L(\theta, \mathbf{x}, t)))$$

■ Iterative Fast Gradient Sign Method (I-FGSM)

$$\hat{\mathbf{x}}^{(0)} = \mathbf{x}, \quad \hat{\mathbf{x}}^{(j)} = \operatorname{clip}_{\mathcal{X},\varepsilon} \left( \hat{\mathbf{x}}^{(j-1)} + \alpha \operatorname{sign}(\nabla_{\mathbf{x}} L(\theta, \hat{\mathbf{x}}^{(j-1)}, t)) \right)$$

 $\blacksquare$  Carlini-Wagner (C&W) - optimizes the Lagrangian formulation

$$\min_{\hat{\mathbf{x}}} \quad \left[ \|\mathbf{x} - \hat{\mathbf{x}}\|_2^2 + c \; \max(\max_{i \neq t} (f_\theta(\hat{\mathbf{x}})_i) - f_\theta(\hat{\mathbf{x}})_t, -\kappa) \right]$$





### Adversarial Example



Figure 3: ImageNet example (left), the perturbation needed to change the image label (middle), and the perturbed image (right).





### Defenses against Adversarial Attacks

Adversarial Training Problem

$$\min_{\theta} \mathbb{E}_{(\mathbf{x},t)\sim D} \left[ \max_{\hat{\mathbf{x}}\in\mathcal{X}: \|\hat{\mathbf{x}}-\mathbf{x}\|_{p} \leq \varepsilon} L(\theta, \hat{\mathbf{x}}, t) \right]$$

 $\hookrightarrow$  Trains classifiers to only defend against small norm  $\ell_p$  attacks in the pixel domain

Idea:

Generate adversarial attacks in a different representation space

 $\hookrightarrow$  Attacks generated in a different space circumvent adversarial training due to large  $\ell_p$  norm in the pixel space





## Circumventing Adversarial Training



Figure 4: Images from the CIFAR-10 dataset with their corresponding adversarial examples generated by I-FGSM in the low frequency DWT domain (with a scale of 2), as well as their differences in the pixel and DWT domain.





### Image Pre-processing Methods

Experiment with

- JPEG Compression
- PCA Denoising
- Soft-Thresholding
- Wavelet Denoising
- $\hookrightarrow$  Do not modify the training procedure or the architecture
- $\hookrightarrow$  Detect or remove adversarial attacks by smoothing the input data
- $\hookrightarrow$  Rely on removing high frequency signal (Shaham et al., 2018a)





## Can we also circumvent Compression Techniques?

- Adversarial attacks are made up of high frequency noise, regardless of the generation space
- Low frequencies are crucial for the SOA models to extract class-specific information from images



Figure 5: Accuracy of model trained on clean data and adversarially trained model. Some wavelet coefficients of the test images are multiplied by  $0 \le \lambda \le 1$ . Either the low frequency, HL, LH, HH, or all high frequency coefficients are multiplied by  $\lambda$ .





## Circumventing Adversarial Training and Compression Techniques

#### Question:

 $\hookrightarrow$  Can we generate adversarial attacks that circumvent both adversarial training and defense pre-processing methods?

#### Idea:

 $\,\hookrightarrow\,\,$  Generate perturbations in the low frequency wavelet domain





#### Wavelet-based Low Frequency Adversarial Attacks





#### Wavelet-based Adversarial Attacks

 $\blacksquare$  Representation space  $\mathcal R$  - map given by the DWT basis

• 
$$\mathbf{x} \in \mathbb{R}^{n \times c} \to \mathcal{R}(\mathbf{x})$$



Figure 6: The low frequency I-FGSM attack with DWT scale 1 for a basketball image from ImageNet.





### FGSM in the Wavelet Domain

 $\blacksquare$  FGSM problem in the wavelet domain  ${\mathcal R}$ 

$$\underset{\|\mathbf{r}\|_{\infty} \leq \varepsilon}{\arg \max} L(\theta, \mathcal{R}^{-1}(\mathcal{R}(\mathbf{x}) + \mathbf{r}), t),$$

**2** First order approximation

$$\underset{\|\mathbf{r}\|_{\infty} \leq \varepsilon}{\arg \max L(\theta, \mathcal{R}^{-1}(\mathcal{R}(\mathbf{x})), t) + \mathbf{r} \nabla_{\mathcal{R}(\mathbf{x})} L(\theta, \mathcal{R}^{-1}(\mathcal{R}(\mathbf{x})), t)}$$

**3** Maximal perturbation

$$\mathbf{r} = \varepsilon \operatorname{sign}(\nabla_{\mathcal{R}(\mathbf{x})} L(\theta, \mathcal{R}^{-1}(\mathcal{R}(\mathbf{x})), t))$$

4 Linear  $\mathcal{R}$ 

$$\mathbf{r} = \varepsilon \operatorname{sign} \left( \mathcal{R} \left( \frac{\partial L(\boldsymbol{\theta}, \mathbf{x}, t)}{\partial \mathbf{x}} \right) \right)$$

Shpresim Sadiku





#### Wavelet-based Low Frequency Adversarial Attacks

Low Frequency FGSM

$$\delta' = \varepsilon \operatorname{sign} \left( \left[ \begin{array}{c|c} \left[ \mathcal{R} \left( \frac{\partial L(\theta, \mathbf{x}, t)}{\partial \mathbf{x}} \right) \right]_{LL} & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{0} \end{array} \right] \right)$$

■ Low Frequency I-FGSM

$$\hat{x}^{(0)} = x, \quad \hat{x}^{(n)} = \operatorname{clip}_{x,\varepsilon} \left( \operatorname{clip}_{[0,1]} \left( \hat{x}^{(n-1)} - \mathcal{R}^{-1} \left( r^{(n)} \right) \right) \right)$$

with

$$\delta^{(n)} = \varepsilon \left( \left[ \begin{array}{c|c} \left[ \mathcal{R}\left( \frac{\partial L(\theta, \hat{\mathbf{x}}^{(n-1)}, t)}{\partial \hat{\mathbf{x}}^{(n-1)}} \right) \right]_{LL} & 0\\ \hline 0 & 0 \end{array} \right] \right)$$





## Low frequency C&W $\ell_2$

$$\tilde{\mathbf{x}} = \mathcal{R}(\tanh^{-1}(2\mathbf{x} - 1))$$

Define

$$\hat{\mathbf{w}} = \begin{bmatrix} \mathbf{w} & \tilde{\mathbf{x}}_{LH} \\ \hline \tilde{\mathbf{x}}_{HL} & \tilde{\mathbf{x}}_{HH} \end{bmatrix}$$

Choose

$$\delta = \mathcal{R}\left(\frac{1}{2}\left(\tanh\left(\mathcal{R}^{-1}\left(\hat{w}\right)\right) + 1\right)\right) - \mathcal{R}(x).$$

s.t.  $\mathcal{R}^{-1}(\mathcal{R}(\mathbf{x}) + \mathbf{r}) \in [0, 1]^{n \times m}$ 

Optimize over w

$$\min \|\mathcal{R}(\frac{1}{2}(\tanh(\mathcal{R}^{-1}(\hat{\mathbf{w}}))+1)) - \mathcal{R}(\mathbf{x})\|_{2}^{2} + cf(\frac{1}{2}(\tanh(\mathcal{R}^{-1}(\hat{\mathbf{w}}))+1)),$$

Shpresim Sadiku





#### Experiments



Figure 7: Accuracy of model with pre-processing defenses attacked by FGSM, I-FGSM and C&W  $\ell_2$  in pixel domain and low frequency DWT domain. Tested on 10,000 images from the CIFAR-10 dataset.

Shpresim Sadiku





#### Future work

- Generate almost imperceptible low frequency adversarial attacks in a black box setting and for real-world scenarios
- Given this vulnerability of NNs, design SOA defense strategies
  → Integrate low frequency adversarial attacks in the adversarial training procedure





# Thank you!