What is backpropagation?

Shpresim Sadiku
(Technische Universität Berlin \& Zuse Institute Berlin)

Berlin Mathematical School
BMS

What is ...? Seminar • February 10, 2023

Outline

- The Perceptron Algorithm
- Perceptron via gradient descent
- Gradients of a Neural Network
- Numerical gradient computation
- Backpropagation algorithm
- Chain rule and multivariate chain rule
- Backpropagation through example
- Formalization of backpropagation
- Vanishing gradients
- Choice of nonlinear activation functions
- Automatic differentiation

The Perceptron

Structure:

- Weighted sum of input features

$$
\begin{aligned}
z & =\sum_{i=1}^{n} w_{i} x_{i}+b \\
& =\mathbf{w}^{T} \mathbf{x}+b
\end{aligned}
$$

- Followed by the sign function

$$
y=\operatorname{sign}(z)
$$

Learning task: Given input data

$$
\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \mathbf{x}^{(m)} \in \mathbb{R}^{n}
$$

of corresponding labels $t^{(1)}, t^{(2)}, \ldots, t^{(m)} \in\{-1,1\}$

- Goal is to learn a collection of parameters (\mathbf{w}, b) such that

$$
\min _{\mathbf{w}, b} \sum_{j=1}^{m} \mathcal{L}\left(t^{j}, \mathbf{w}^{T} \mathbf{x}^{j}+b\right)
$$

- $\mathcal{L}(\mathbf{w}, b)$ denotes the error function

The Perceptron

- Predictions of the perceptron for each datapoint

$$
\begin{aligned}
z^{(j)} & =\mathbf{w}^{T} \mathbf{x}^{(j)}+b \\
y^{(j)} & =\operatorname{sign}\left(z^{(j)}\right)
\end{aligned}
$$

Question:

Can all the points be correctly classified

$$
\exists(\mathbf{w}, b): y^{(j)}=t^{(j)}, \forall_{j=1}^{m} ?
$$

The Perceptron Algorithm

Perceptron Algorithm

- Initialize $\mathbf{w}=\mathbf{0}$ and $b=0$
- Repeat for $j=1, \ldots, m$
- If $\mathbf{x}^{(j)}$ is correctly classified $\left(y^{(j)}=t^{(j)}\right)$, continue
- If $\mathbf{x}^{(j)}$ is wrongly classified $\left(y^{(j)} \neq t^{(j)}\right)$, update

$$
\begin{aligned}
\mathbf{w} & \leftarrow \mathbf{w}+\eta \cdot \mathbf{x}^{(j)} t^{(j)} \\
b & \leftarrow b+\eta \cdot t^{(j)}
\end{aligned}
$$

for some learning rate η

- Until all examples are classified correctly

Optimization View of Perceptron

Proposition

The perceptron is equivalent to the gradient descent of the so-called Hinge Loss

$$
\mathcal{L}(\mathbf{w}, b)=\frac{1}{m} \sum_{j=1}^{m} \underbrace{\max \left(0,-z^{(j)} t^{(j)}\right)}_{\mathcal{L}_{j}(\mathbf{w}, b)}
$$

Proof.

$$
\begin{aligned}
\mathbf{w}-\eta \frac{\partial \mathcal{L}_{j}}{\partial \mathbf{w}} & =\mathbf{w}-\eta \cdot 1_{-z^{(j)}} t^{(j)>0} \cdot\left(-\frac{\partial z^{(j)}}{\partial \mathbf{w}} t^{(j)}\right) \\
& =\mathbf{w}-\eta \cdot 1_{y^{(j)} \neq t^{(j)}} \cdot\left(-\frac{\partial z^{(j)}}{\partial \mathbf{w}} t^{(j)}\right) \\
& =\mathbf{w}+\eta \cdot 1_{y^{(j)} \neq t^{(j)}} \cdot \mathbf{x}^{(j)} t^{(j)}
\end{aligned}
$$

- Proceed similarly for the parameter b

From Perceptron to Deep Neural Networks

Idea:

Stack multiple perceptrons together to generalize the formulation where z is the output of a multilayer neural network with parameters θ
\hookrightarrow Updated error function $\mathcal{L}(\theta)$

Numerical Differentiation

Question:

How hard is it to compute the gradient of the error function w.r.t. the model parameters

$$
\theta=\theta-\eta \frac{\partial \mathcal{L}}{\partial \theta} ?
$$

Idea:

Use the definition of the derivative

$$
\forall_{t}: \frac{\partial \mathcal{L}}{\partial \theta_{t}}=\lim _{\varepsilon \rightarrow 0} \frac{\mathcal{L}\left(\theta+\varepsilon \cdot \delta_{t}\right)-\mathcal{L}(\theta)}{\varepsilon}
$$

- δ_{t} denotes an indicator vector for the parameter t

Properties:

- Applicable to any error function \mathcal{L}
- Re-evaluate the function as many times as there are parameters (\hookrightarrow slow for a large number of parameters)
- Neural networks typically have between 10^{3} and 10^{9} parameters (\hookrightarrow numerical differentiation unfeasible)
= Need to use high-precision due to small ε and numerator

Non-convex error function

Problems:

- $\mathcal{L}(\theta)$ is non-convex and non-linear
- For complex functions, the computation of $\nabla_{\theta} \mathcal{L}$ is tricky to be done by hand

Question:

Can we do this automatically?

- A general rule to find the weights θ was not discovered until 1974 (Paul Werbos) / 1985 (LeCun) / 1986 (Rumelhart et al.)

Idea:

Need to compute the gradient $\partial \mathcal{L} / \partial w_{j k}$
\hookrightarrow Compute the error at the output, and propagate that back to the neurons in the earlier layers
\hookrightarrow Compute the gradient

The Chain Rule

- Assume some parameter of interest θ_{q} and the output of the network z are linked through a sequence of functions

$$
\theta_{q} \longrightarrow a \longrightarrow b \longrightarrow z
$$

- Applying the chain rule for derivatives, the derivative w.r.t. the parameter of interest is the product of local derivatives along the path connecting θ_{q} to z

$$
\frac{\partial z}{\partial \theta_{q}}=\frac{\partial a}{\partial \theta_{q}} \frac{\partial b}{\partial a} \frac{\partial z}{\partial b}
$$

The Multivariate Chain Rule

- The parameter of interest may be linked to the output of the network via multiple paths, formed by all neurons in layers between θ_{q} and z

- Multivariate scenario \Rightarrow the chain rule enumerates all the paths between θ_{q} and z

$$
\frac{\partial z}{\partial \theta_{q}}=\sum_{i} \sum_{j} \frac{\partial a_{i}}{\partial \theta_{q}} \frac{\partial b_{j}}{\partial a_{j}} \frac{\partial z}{\partial b_{j}}
$$

where \sum_{i} and \sum_{j} run over all indices of the nodes in the corresponding layers

- Nested sum - complexity grows exponentially with the number of layers

Factor Structure in the Multivariate Chain Rule

- Re-write the computation - perform the summing operation incrementally
- Re-use intermediate computation for different paths and parameters for which we would like to compute the gradient

$$
\frac{\partial z}{\partial \theta_{q}}=\sum_{i} \frac{\partial a_{i}}{\partial \theta_{q}} \underbrace{\sum_{j} \frac{\partial b_{j}}{\partial a_{j}} \underbrace{\frac{\partial z}{\partial b_{j}}}_{\delta_{j}}}_{\delta_{i}}
$$

- The resulting gradient computation w.r.t. all parameters in the network is linear with the size of the network (\Rightarrow fast!)

Backpropagation through Example

Forward pass:

$$
\begin{aligned}
z_{3} & =a_{1} w_{13} \\
z_{4} & =a_{1} w_{14}+a_{2} w_{24} \\
z_{5} & =a_{3} w_{35}+a_{4} w_{45} \\
z_{6} & =a_{4} w_{46} \\
z_{\text {out }} & =a_{5} v_{5}+a_{6} v_{6} \\
\mathcal{L} & =\max \left(0,-z_{\text {out }} \cdot t\right)
\end{aligned}
$$

$$
\begin{aligned}
a_{1} & =x_{1} \\
a_{2} & =x_{2} \\
a_{3} & =\tanh \left(z_{3}\right) \\
a_{4} & =\tanh \left(z_{4}\right) \\
a_{5} & =\tanh \left(z_{5}\right) \\
a_{6} & =\tanh \left(z_{6}\right)
\end{aligned}
$$

Backpropagation through Example

$$
z_{3}=a_{1} w_{13}
$$

$$
z_{4}=a_{1} w_{14}+a_{2} w_{24}
$$

$$
\begin{aligned}
a_{1} & =x_{1} \\
a_{2} & =x_{2} \\
a_{3} & =\tanh \left(z_{3}\right) \\
a_{4} & =\tanh \left(z_{4}\right) \\
a_{5} & =\tanh \left(z_{5}\right) \\
a_{6} & =\tanh \left(z_{6}\right)
\end{aligned}
$$

Backward pass:

$$
\begin{aligned}
& \delta_{\text {out }}= \frac{\partial \mathcal{L}}{\partial z_{\text {out }}}=1_{\left\{-z_{\text {out }} \cdot t>0\right\}} \cdot(-t) \\
& \frac{\partial \mathcal{L}}{\partial v_{6}}=\frac{\partial z_{\text {out }}}{\partial v_{6}} \frac{\partial \mathcal{L}}{\partial z_{\text {out }}}=a_{6} \cdot \delta_{\text {out }} \\
& \frac{\partial \mathcal{L}}{\partial v_{5}}=\frac{\partial z_{\text {out }}}{\partial v_{5}} \frac{\partial \mathcal{L}}{\partial z_{\text {out }}}=a_{5} \cdot \delta_{\text {out }}
\end{aligned}
$$

Backpropagation through Example

$$
z_{3}=a_{1} w_{13}
$$

$$
z_{4}=a_{1} w_{14}+a_{2} w_{24}
$$

$$
\begin{aligned}
a_{1} & =x_{1} \\
a_{2} & =x_{2} \\
a_{3} & =\tanh \left(z_{3}\right) \\
a_{4} & =\tanh \left(z_{4}\right) \\
a_{5} & =\tanh \left(z_{5}\right) \\
a_{6} & =\tanh \left(z_{6}\right)
\end{aligned}
$$

Backward pass:

$$
\begin{aligned}
\delta_{\text {out }} & =\frac{\partial \mathcal{L}}{\partial z_{\text {out }}}=1_{\left\{-z_{\text {out }} \cdot t>0\right\}} \cdot(-t) \\
\delta_{6} & =\frac{\partial \mathcal{L}}{\partial a_{6}}=\frac{\partial z_{\text {out }}}{\partial a_{6}} \frac{\partial \mathcal{L}}{\partial z_{\text {out }}}=v_{6} \cdot \delta_{\text {out }} \\
\delta_{5} & =\frac{\partial \mathcal{L}}{\partial a_{5}}=\frac{\partial z_{\text {out }}}{\partial a_{5}} \frac{\partial \mathcal{L}}{\partial z_{\text {out }}}=v_{5} \cdot \delta_{\text {out }}
\end{aligned}
$$

Backpropagation through Example

$$
\begin{aligned}
a_{1} & =x_{1} \\
a_{2} & =x_{2} \\
a_{3} & =\tanh \left(z_{3}\right) \\
a_{4} & =\tanh \left(z_{4}\right) \\
a_{5} & =\tanh \left(z_{5}\right) \\
a_{6} & =\tanh \left(z_{6}\right)
\end{aligned}
$$

Backward pass:

$$
\begin{aligned}
\delta_{6}=\frac{\partial \mathcal{L}}{\partial a_{6}} & =\frac{\partial z_{\text {out }}}{\partial a_{6}} \frac{\partial \mathcal{L}}{\partial z_{\text {out }}}=v_{6} \cdot \delta_{\text {out }} \\
\delta_{5}=\frac{\partial \mathcal{L}}{\partial a_{5}} & =\frac{\partial z_{\text {out }}}{\partial a_{5}} \frac{\partial \mathcal{L}}{\partial z_{\text {out }}}=v_{5} \cdot \delta_{\text {out }} \\
\frac{\partial \mathcal{L}}{\partial w_{46}} & =\frac{\partial z_{6}}{\partial w_{46}} \frac{\partial a_{6}}{\partial z_{6}} \frac{\partial \mathcal{L}}{\partial a_{6}}=a_{4} \cdot \tanh ^{\prime}\left(z_{6}\right) \cdot \delta_{6} \\
\frac{\partial \mathcal{L}}{\partial w_{45}} & =\frac{\partial z_{5}}{\partial w_{45}} \frac{\partial a_{5}}{\partial z_{5}} \frac{\partial \mathcal{L}}{\partial a_{5}}=a_{4} \cdot \tanh ^{\prime}\left(z_{5}\right) \cdot \delta_{5} \\
\frac{\partial \mathcal{L}}{\partial w_{35}} & =\frac{\partial z_{5}}{\partial w_{35}} \frac{\partial a_{5}}{\partial z_{5}} \frac{\partial \mathcal{L}}{\partial a_{3}}=a_{5} \cdot \tanh ^{\prime}\left(z_{5}\right) \cdot \delta_{5}
\end{aligned}
$$

Backpropagation through Example

$$
\begin{aligned}
z_{3} & =a_{1} w_{13} \\
z_{4} & =a_{1} w_{14}+a_{2} w_{24}
\end{aligned}
$$

$$
z_{5}=a_{3} w_{35}+a_{4} w_{45}
$$

$$
\begin{aligned}
a_{1} & =x_{1} \\
a_{2} & =x_{2} \\
a_{3} & =\tanh \left(z_{3}\right) \\
a_{4} & =\tanh \left(z_{4}\right) \\
a_{5} & =\tanh \left(z_{5}\right) \\
a_{6} & =\tanh \left(z_{6}\right)
\end{aligned}
$$

Backward pass:

$\delta_{6}=\frac{\partial \mathcal{L}}{\partial a_{6}}=\frac{\partial z_{\text {out }}}{\partial a_{6}} \frac{\partial \mathcal{L}}{\partial z_{\text {out }}}=v_{6} \cdot \delta_{\text {out }}$
$\delta_{5}=\frac{\partial \mathcal{L}}{\partial a_{5}}=\frac{\partial z_{\text {out }}}{\partial a_{5}} \frac{\partial \mathcal{L}}{\partial z_{\text {out }}}=v_{5} \cdot \delta_{\text {out }}$
$\delta_{4}=\frac{\partial \mathcal{L}}{\partial a_{4}}=\frac{\partial z_{6}}{\partial a_{4}} \frac{\partial a_{6}}{\partial z_{6}} \frac{\partial \mathcal{L}}{\partial a_{6}}+\frac{\partial z_{5}}{\partial a_{4}} \frac{\partial a_{5}}{\partial z_{5}} \frac{\partial \mathcal{L}}{\partial a_{5}}=w_{46} \cdot \tanh ^{\prime}\left(z_{6}\right) \cdot \delta_{6}+w_{45} \cdot \tanh { }^{\prime}\left(z_{5}\right) \cdot \delta_{5}$
$\delta_{3}=\frac{\partial \mathcal{L}}{\partial a_{3}}=\frac{\partial z_{5}}{\partial a_{3}} \frac{\partial a_{5}}{\partial z_{5}} \frac{\partial \mathcal{L}}{\partial a_{5}}=w_{35} \cdot \tanh ^{\prime}\left(z_{5}\right) \cdot \delta_{5}$

Backpropagation through Example

$$
\begin{aligned}
z_{3} & =a_{1} w_{13} \\
z_{4} & =a_{1} w_{14}+a_{2} w_{24}
\end{aligned}
$$

$$
z_{5}=a_{3} w_{35}+a_{4} w_{45}
$$

$$
\begin{aligned}
a_{1} & =x_{1} \\
a_{2} & =x_{2} \\
a_{3} & =\tanh \left(z_{3}\right) \\
a_{4} & =\tanh \left(z_{4}\right) \\
a_{5} & =\tanh \left(z_{5}\right) \\
a_{6} & =\tanh \left(z_{6}\right)
\end{aligned}
$$

Backward pass:

$$
\begin{aligned}
& \delta_{4}=\frac{\partial \mathcal{L}}{\partial a_{4}}=\frac{\partial z_{6}}{\partial a_{4}} \frac{\partial a_{6}}{\partial z_{6}} \frac{\partial \mathcal{L}}{\partial a_{6}}+\frac{\partial z_{5}}{\partial a_{4}} \frac{\partial a_{5}}{\partial z_{5}} \frac{\partial \mathcal{L}}{\partial a_{5}}=w_{46} \cdot \tanh ^{\prime}\left(z_{6}\right) \cdot \delta_{6}+w_{45} \cdot \tanh ^{\prime}\left(z_{5}\right) \cdot \delta_{5} \\
& \delta_{3}=\frac{\partial \mathcal{L}}{\partial a_{3}}=\frac{\partial z_{5}}{\partial a_{3}} \frac{\partial a_{5}}{\partial z_{5}} \frac{\partial \mathcal{L}}{\partial a_{5}}=w_{35} \cdot \tanh ^{\prime}\left(z_{5}\right) \cdot \delta_{5} \\
& \frac{\partial \mathcal{L}}{\partial w_{24}}=\frac{\partial z_{4}}{\partial w_{24}} \frac{\partial a_{4}}{\partial z_{4}} \frac{\partial \mathcal{L}}{\partial a_{4}}=a_{2} \cdot \tanh ^{\prime}\left(z_{4}\right) \cdot \delta_{4} \\
& \frac{\partial \mathcal{L}}{\partial w_{14}}=\frac{\partial z_{4}}{\partial w_{14}} \frac{\partial a_{4}}{\partial z_{4}} \frac{\partial \mathcal{L}}{\partial a_{4}}=a_{1} \cdot \tanh ^{\prime}\left(z_{4}\right) \cdot \delta_{4} \\
& \frac{\partial \mathcal{L}}{\partial w_{13}}=\frac{\partial z_{3}}{\partial w_{13}} \frac{\partial a_{3}}{\partial z_{3}} \frac{\partial \mathcal{L}}{\partial a_{3}}=a_{1} \cdot \tanh ^{\prime}\left(z_{3}\right) \cdot \delta_{3}
\end{aligned}
$$

Formalization for a Standard Neural Network

- Propagate the gradient of the error from layer to layer using the chain rule

$$
\underbrace{\frac{\partial \mathcal{L}}{\partial a_{j}}}_{\delta_{j}}=\sum_{k} \underbrace{\frac{\partial a_{k}}{\partial a_{j}}}_{w_{j k} g^{\prime}\left(z_{k}\right)} \cdot \underbrace{\frac{\partial \mathcal{L}}{\partial a_{k}}}_{\delta_{k}}
$$

- Extract gradients w.r.t. parameters at each layer as

$$
\frac{\partial \mathcal{L}}{\partial w_{j k}}=\sum_{k} \underbrace{\frac{\partial a_{k}}{\partial w_{j k}}}_{a_{j} g^{\prime}\left(z_{k}\right)} \cdot \underbrace{\frac{\partial \mathcal{L}}{\partial a_{k}}}_{\delta_{k}}
$$

- Re-write equations as matrix-vector products

$$
\begin{aligned}
\delta^{(l-1)} & =W^{(l-1, l)} \cdot\left(g^{\prime}\left(\mathbf{z}^{(l)}\right) \odot \delta^{(l)}\right) \\
\frac{\partial \mathcal{L}}{\partial W^{(l-1, l)}} & =\mathbf{a} \cdot\left(g^{\prime}\left(\mathbf{z}^{(l)}\right) \odot \delta^{(l)}\right)^{T}
\end{aligned}
$$

Vanishing gradient

- In general

$$
\partial \mathcal{L} / \partial W^{(l-1, l)} \gg \partial \mathcal{L} / \partial W^{(l-2, l-1)}
$$

\Rightarrow the more left you get in the network, the more the gradient vanishes

- tanh has gradients in the range $(0,1]$
\Rightarrow in an n-layer network the gradient decreases exponentially with n

Ways to circumvent vanishing gradients

- Use many labeled data (e.g., well possible for images)
- Train 'longer" (possible with GPUs)
- Better weight initialization (e.g., Xavier/Glorot)
- Regularize with "dropout"
- Other activation functions: ReLU

Choice of Nonlinear Activation Function

Choose the nonlinear function such that

- Its gradient is defined (almost) everywhere
- A significant portion of the input domain has a non-zero gradient
- Its gradient is informative, i.e., indicate decrease/increase of the activation function

Commonly used activation functions:

- Sigmoid: $g(z)=\exp (z) /(1+\exp (z))$
- tanh: $g(z)=\tanh (z)$
- ReLU: $g(z)=\max (0, z)$

Problematic activation functions:

- $g(z)=\max (0, z-100)$
- $g(z)=1_{z>0}$
- $g(z)=\sin (100 \cdot z)$

Automatic Differentiation

- Automatically generate backpropagation equations from the forward equations
- Automatic differentiation widely available in deep learning libraries (PyTorch, Tensorflow, JAX, etc.)

Consequences:

- No need to do backpropagation, just program the forward pass \hookrightarrow backward pass comes for free
- Motivated the development of neural networks that are way more complex, and with much more heterogeneous structures (e.g. ResNet, Yolo, transformers, etc.)
■ In few cases, it is still useful to express the gradient analytically (e.g. to analyze theoretically the stability of a gradient descent procedure)

Training Neural Networks

Basic gradient descent algorithm

- Initialize θ at random
- Repeat for T steps
- Compute the forward pass
- Use backpropagation to extract $\partial \mathcal{L} / \partial \theta$
- Perform a gradient step

$$
\theta=\theta-\gamma \frac{\partial \mathcal{L}}{\partial \theta}
$$

for some learning rate γ

Summary

- Gradient descent to minimize the error of a classifier (e.g. Perceptron, neural network + backpropagation)
- Error backpropagation provides a computationally efficient way of computing the gradient compared to the formula for numerical differentiation
- Error backpropagation is a direct application of the multivariate chain rule, where the different terms can be factored due to the structure of the neural network graph
- Use certain techniques to circumvent vanishing gradients
- No need to program error backpropagation manually, use automatic differentiation techniques instead

THANK YOU!

Slides available at:
www.shpresimsadiku.com
Check related information on Twitter at:
@shpresimsadiku

